Spaces:
Build error
Build error
std::vector<float> softmax(const std::vector<float>& logits) { | |
std::vector<float> probs(logits.size()); | |
float max_logit = logits[0]; | |
for (float v : logits) max_logit = std::max(max_logit, v); | |
double sum_exp = 0.0; | |
for (size_t i = 0; i < logits.size(); i++) { | |
// Subtract the maximum logit value from the current logit value for numerical stability | |
const float logit = logits[i] - max_logit; | |
const float exp_logit = expf(logit); | |
sum_exp += exp_logit; | |
probs[i] = exp_logit; | |
} | |
for (size_t i = 0; i < probs.size(); i++) probs[i] /= sum_exp; | |
return probs; | |
} | |
void perplexity(llama_context * ctx, const gpt_params & params) { | |
// Download: https://s3.amazonaws.com/research.metamind.io/wikitext/wikitext-2-raw-v1.zip?ref=salesforce-research | |
// Run `./perplexity -m models/7B/ggml-model-q4_0.bin -f wiki.test.raw` | |
// Output: `perplexity: 13.5106 [114/114]` | |
// BOS tokens will be added for each chunk before eval | |
auto tokens = ::llama_tokenize(ctx, params.prompt, true); | |
const int n_chunk_max = tokens.size() / params.n_ctx; | |
const int n_chunk = params.n_chunks < 0 ? n_chunk_max : std::min(params.n_chunks, n_chunk_max); | |
const int n_vocab = llama_n_vocab(ctx); | |
const int n_batch = params.n_batch; | |
int count = 0; | |
double nll = 0.0; | |
fprintf(stderr, "%s: calculating perplexity over %d chunks, batch_size=%d\n", __func__, n_chunk, n_batch); | |
for (int i = 0; i < n_chunk; ++i) { | |
const int start = i * params.n_ctx; | |
const int end = start + params.n_ctx; | |
const int num_batches = (params.n_ctx + n_batch - 1) / n_batch; | |
std::vector<float> logits; | |
const auto t_start = std::chrono::high_resolution_clock::now(); | |
for (int j = 0; j < num_batches; ++j) { | |
const int batch_start = start + j * n_batch; | |
const int batch_size = std::min(end - batch_start, n_batch); | |
// save original token and restore it after eval | |
const auto token_org = tokens[batch_start]; | |
// add BOS token for the first batch of each chunk | |
if (j == 0) { | |
tokens[batch_start] = llama_token_bos(); | |
} | |
if (llama_eval(ctx, tokens.data() + batch_start, batch_size, j * n_batch, params.n_threads)) { | |
fprintf(stderr, "%s : failed to eval\n", __func__); | |
return; | |
} | |
// restore the original token in case it was set to BOS | |
tokens[batch_start] = token_org; | |
const auto batch_logits = llama_get_logits(ctx); | |
logits.insert(logits.end(), batch_logits, batch_logits + batch_size * n_vocab); | |
} | |
const auto t_end = std::chrono::high_resolution_clock::now(); | |
if (i == 0) { | |
const float t_total = std::chrono::duration<float>(t_end - t_start).count(); | |
fprintf(stderr, "%s: %.2f seconds per pass - ETA ", __func__, t_total); | |
int total_seconds = (int)(t_total * n_chunk); | |
if (total_seconds >= 60*60) { | |
fprintf(stderr, "%d hours ", total_seconds / (60*60)); | |
total_seconds = total_seconds % (60*60); | |
} | |
fprintf(stderr, "%d minutes\n", total_seconds / 60); | |
} | |
// We get the logits for all the tokens in the context window (params.n_ctx) | |
// from llama_eval above. Now, based on https://huggingface.co/docs/transformers/perplexity, | |
// calculate the perplexity over the last half of the window (so the model always has | |
// some context to predict the token). | |
// | |
// We rely on the fact that attention in the forward pass only looks at previous | |
// tokens here, so the logits returned for each token are an accurate representation | |
// of what the model would have predicted at that point. | |
// | |
// Example, we have a context window of 512, we will compute perplexity for each of the | |
// last 256 tokens. Then, we split the input up into context window size chunks to | |
// process the entire prompt. | |
for (int j = std::min(512, params.n_ctx / 2); j < params.n_ctx - 1; ++j) { | |
// Calculate probability of next token, given the previous ones. | |
const std::vector<float> tok_logits( | |
logits.begin() + (j + 0) * n_vocab, | |
logits.begin() + (j + 1) * n_vocab); | |
const float prob = softmax(tok_logits)[tokens[start + j + 1]]; | |
nll += -std::log(prob); | |
++count; | |
} | |
// perplexity is e^(average negative log-likelihood) | |
printf("[%d]%.4lf,", i + 1, std::exp(nll / count)); | |
fflush(stdout); | |
} | |
printf("\n"); | |
} | |
void hellaswag_score(llama_context * ctx, const gpt_params & params) { | |
// Calculates hellaswag score (acc_norm) from prompt | |
// | |
// Data extracted from the HellaSwag validation dataset (MIT license) https://github.com/rowanz/hellaswag/blob/master/data/hellaswag_val.jsonl | |
// All used data fields are preprocessed as in https://github.com/EleutherAI/lm-evaluation-harness/blob/df3da98c5405deafd519c2ddca52bb7c3fe36bef/lm_eval/tasks/hellaswag.py#L62-L68 | |
// | |
// All 10042 tasks should be extracted to keep the results standardized like other implementations. | |
// | |
// Datafile layout: | |
// ['??'] denotes json fields | |
// 6 lines per task: | |
// ['activity_label'] + ": " +['ctx'] - The first part of the query, the context | |
// ['label'] - The index the best common sense ending aka gold ending | |
// ['endings'][0] - Endings added to the first part of the query | |
// ['endings'][1] | |
// ['endings'][2] | |
// ['endings'][3] | |
std::vector<std::string> prompt_lines; | |
std::istringstream strstream(params.prompt); | |
std::string line; | |
while (std::getline(strstream,line,'\n')) { | |
prompt_lines.push_back(line); | |
} | |
if( prompt_lines.size() % 6 != 0) { | |
fprintf(stderr, "%s : number of lines in prompt not a multiple of 6.\n", __func__); | |
return; | |
} | |
size_t hs_task_count = prompt_lines.size()/6; | |
fprintf(stderr, "%s : loaded %zu tasks from prompt.\n", __func__, hs_task_count); | |
// This is needed as usual for LLaMA models | |
bool prepend_bos = true; | |
// Number of tasks to use when computing the score | |
if ( params.hellaswag_tasks < hs_task_count ) { | |
hs_task_count = params.hellaswag_tasks; | |
} | |
// The tasks should be randomized so the score stabilizes quickly. | |
bool randomize_tasks = true; | |
// The random seed should not impact the final result if the computation is done over enough tasks, so kept hardcoded for now | |
std::mt19937 rng(1); | |
// Dataholder for hellaswag tasks | |
struct hs_data_t { | |
std::string context; | |
size_t gold_ending_idx; | |
std::string ending[4]; | |
size_t ending_logprob_count[4]; | |
double ending_logprob[4]; | |
}; | |
fprintf(stderr, "%s : selecting %zu %s tasks.\n", __func__, hs_task_count, (randomize_tasks?"randomized":"the first") ); | |
// Select and read data from prompt lines | |
hs_data_t *hs_data = new hs_data_t[hs_task_count]; | |
for (size_t i=0; i < hs_task_count; i++) { | |
size_t idx = i; | |
// Select a random example of those left in the prompt | |
if (randomize_tasks) { | |
std::uniform_int_distribution<size_t> dist(0, prompt_lines.size()/6-1 ) ; | |
idx = dist(rng); | |
} | |
hs_data[i].context = prompt_lines[idx*6]; | |
hs_data[i].gold_ending_idx = std::stoi( prompt_lines[idx*6+1] ); | |
for (size_t j=0; j < 4; j++) { | |
hs_data[i].ending[j] = " " + prompt_lines[idx*6+2+j]; | |
} | |
// Delete the selected random example from the prompt | |
if (randomize_tasks) { | |
prompt_lines.erase( std::next(prompt_lines.begin(),idx*6) , std::next(prompt_lines.begin(),idx*6+6) ); | |
} | |
} | |
fprintf(stderr, "%s : calculating hellaswag score over selected tasks.\n", __func__); | |
printf("\ntask\tacc_norm\n"); | |
double acc = 0.0f; | |
const int n_vocab = llama_n_vocab(ctx); | |
for (size_t task_idx = 0; task_idx < hs_task_count; task_idx++) { | |
// Tokenize the context to count tokens | |
std::vector<int> context_embd = ::llama_tokenize(ctx, hs_data[task_idx].context, prepend_bos); | |
size_t context_size = context_embd.size(); | |
for (size_t ending_idx=0;ending_idx<4;ending_idx++) { | |
// Tokenize the query | |
std::vector<int> query_embd = ::llama_tokenize(ctx, hs_data[task_idx].context + hs_data[task_idx].ending[ending_idx], prepend_bos); | |
size_t query_size = query_embd.size(); | |
// Stop if query wont fit the ctx window | |
if (query_size > (size_t)params.n_ctx) { | |
fprintf(stderr, "%s : number of tokens in query %zu > n_ctxl\n", __func__, query_size); | |
return; | |
} | |
// Speedup small evaluations by evaluating atleast 32 tokens | |
if (query_size < 32) { | |
query_embd.resize(32); | |
} | |
// Evaluate the query | |
if (llama_eval(ctx, query_embd.data(), query_embd.size(), 0, params.n_threads)) { | |
fprintf(stderr, "%s : failed to eval\n", __func__); | |
return; | |
} | |
const auto query_logits = llama_get_logits(ctx); | |
std::vector<float> logits; | |
logits.insert(logits.end(), query_logits, query_logits + query_size * n_vocab); | |
hs_data[task_idx].ending_logprob_count[ending_idx] = 0; | |
hs_data[task_idx].ending_logprob[ending_idx] = 0.0f; | |
// Calculate the logprobs over the ending | |
for (size_t j = context_size-1; j < query_size - 1; j++) { | |
// Calculate probability of next token, given the previous ones. | |
const std::vector<float> tok_logits( | |
logits.begin() + (j + 0) * n_vocab, | |
logits.begin() + (j + 1) * n_vocab); | |
const float prob = softmax(tok_logits)[query_embd[ j + 1]]; | |
hs_data[task_idx].ending_logprob[ending_idx] += std::log(prob); | |
hs_data[task_idx].ending_logprob_count[ending_idx]++; | |
} | |
// Calculate the mean token logprob for acc_norm | |
hs_data[task_idx].ending_logprob[ending_idx] /= hs_data[task_idx].ending_logprob_count[ending_idx]; | |
// printf("task %lu, ending %lu, whole_len %lu, context_len %lu, ending_logprob_count %lu, ending_logprob %.4f\n", | |
// task_idx,ending_idx,whole_size,context_size, hs_data[task_idx].ending_logprob_count[ending_idx], hs_data[task_idx].ending_logprob[ending_idx] ); | |
} | |
// Find the ending with maximum logprob | |
size_t ending_logprob_max_idx = -1; | |
double ending_logprob_max_val = -INFINITY; | |
for (size_t j=0; j < 4; j++) { | |
if (hs_data[task_idx].ending_logprob[j] > ending_logprob_max_val) { | |
ending_logprob_max_idx = j; | |
ending_logprob_max_val = hs_data[task_idx].ending_logprob[j]; | |
} | |
} | |
// printf("max logprob ending idx %lu, gold ending idx %lu\n", ending_logprob_max_idx, hs_data[task_idx].gold_ending_idx); | |
// If the gold ending got the maximum logprobe add one accuracy point | |
if (ending_logprob_max_idx == hs_data[task_idx].gold_ending_idx) { | |
acc += 1.0; | |
} | |
// Print the accumulated accuracy mean x 100 | |
printf("%zu\t%.8lf\n",task_idx+1, acc/double(task_idx+1)*100.0); | |
fflush(stdout); | |
} | |
delete [] hs_data; | |
printf("\n"); | |
} | |
int main(int argc, char ** argv) { | |
gpt_params params; | |
params.n_batch = 512; | |
if (gpt_params_parse(argc, argv, params) == false) { | |
return 1; | |
} | |
params.perplexity = true; | |
params.n_batch = std::min(params.n_batch, params.n_ctx); | |
if (params.n_ctx > 2048) { | |
fprintf(stderr, "%s: warning: model might not support context sizes greater than 2048 tokens (%d specified);" | |
"expect poor results\n", __func__, params.n_ctx); | |
} | |
fprintf(stderr, "%s: build = %d (%s)\n", __func__, BUILD_NUMBER, BUILD_COMMIT); | |
if (params.seed == LLAMA_DEFAULT_SEED) { | |
params.seed = time(NULL); | |
} | |
fprintf(stderr, "%s: seed = %u\n", __func__, params.seed); | |
std::mt19937 rng(params.seed); | |
if (params.random_prompt) { | |
params.prompt = gpt_random_prompt(rng); | |
} | |
llama_backend_init(params.numa); | |
llama_model * model; | |
llama_context * ctx; | |
// load the model and apply lora adapter, if any | |
std::tie(model, ctx) = llama_init_from_gpt_params(params); | |
if (model == NULL) { | |
fprintf(stderr, "%s: error: unable to load model\n", __func__); | |
return 1; | |
} | |
// print system information | |
{ | |
fprintf(stderr, "\n"); | |
fprintf(stderr, "system_info: n_threads = %d / %d | %s\n", | |
params.n_threads, std::thread::hardware_concurrency(), llama_print_system_info()); | |
} | |
if (params.hellaswag) { | |
hellaswag_score(ctx, params); | |
} else { | |
perplexity(ctx, params); | |
} | |
llama_print_timings(ctx); | |
llama_free(ctx); | |
llama_free_model(model); | |
llama_backend_free(); | |
return 0; | |
} | |