Spaces:
Build error
Build error
int main(int argc, char ** argv) { | |
gpt_params params; | |
if (argc == 1 || argv[1][0] == '-') { | |
printf("usage: %s MODEL_PATH [PROMPT]\n" , argv[0]); | |
return 1 ; | |
} | |
if (argc >= 2) { | |
params.model = argv[1]; | |
} | |
if (argc >= 3) { | |
params.prompt = argv[2]; | |
} | |
if (params.prompt.empty()) { | |
params.prompt = "Hello my name is"; | |
} | |
// init LLM | |
llama_backend_init(params.numa); | |
llama_context_params ctx_params = llama_context_default_params(); | |
llama_model * model = llama_load_model_from_file(params.model.c_str(), ctx_params); | |
if (model == NULL) { | |
fprintf(stderr , "%s: error: unable to load model\n" , __func__); | |
return 1; | |
} | |
llama_context * ctx = llama_new_context_with_model(model, ctx_params); | |
// tokenize the prompt | |
std::vector<llama_token> tokens_list; | |
tokens_list = ::llama_tokenize(ctx, params.prompt, true); | |
const int max_context_size = llama_n_ctx(ctx); | |
const int max_tokens_list_size = max_context_size - 4; | |
if ((int) tokens_list.size() > max_tokens_list_size) { | |
fprintf(stderr, "%s: error: prompt too long (%d tokens, max %d)\n", __func__, (int) tokens_list.size(), max_tokens_list_size); | |
return 1; | |
} | |
fprintf(stderr, "\n\n"); | |
for (auto id : tokens_list) { | |
fprintf(stderr, "%s", llama_token_to_piece(ctx, id).c_str()); | |
} | |
fflush(stderr); | |
// main loop | |
// The LLM keeps a contextual cache memory of previous token evaluation. | |
// Usually, once this cache is full, it is required to recompute a compressed context based on previous | |
// tokens (see "infinite text generation via context swapping" in the main example), but in this minimalist | |
// example, we will just stop the loop once this cache is full or once an end of stream is detected. | |
const int n_gen = std::min(32, max_context_size); | |
while (llama_get_kv_cache_token_count(ctx) < n_gen) { | |
// evaluate the transformer | |
if (llama_eval(ctx, tokens_list.data(), int(tokens_list.size()), llama_get_kv_cache_token_count(ctx), params.n_threads)) { | |
fprintf(stderr, "%s : failed to eval\n", __func__); | |
return 1; | |
} | |
tokens_list.clear(); | |
// sample the next token | |
llama_token new_token_id = 0; | |
auto logits = llama_get_logits(ctx); | |
auto n_vocab = llama_n_vocab(ctx); | |
std::vector<llama_token_data> candidates; | |
candidates.reserve(n_vocab); | |
for (llama_token token_id = 0; token_id < n_vocab; token_id++) { | |
candidates.emplace_back(llama_token_data{ token_id, logits[token_id], 0.0f }); | |
} | |
llama_token_data_array candidates_p = { candidates.data(), candidates.size(), false }; | |
new_token_id = llama_sample_token_greedy(ctx , &candidates_p); | |
// is it an end of stream ? | |
if (new_token_id == llama_token_eos(ctx)) { | |
fprintf(stderr, " [end of text]\n"); | |
break; | |
} | |
// print the new token : | |
printf("%s", llama_token_to_piece(ctx, new_token_id).c_str()); | |
fflush(stdout); | |
// push this new token for next evaluation | |
tokens_list.push_back(new_token_id); | |
} | |
llama_free(ctx); | |
llama_free_model(model); | |
llama_backend_free(); | |
fprintf(stderr, "\n\n"); | |
return 0; | |
} | |