Spaces:
Build error
Build error
int main(int argc, char ** argv) { | |
gpt_params params; | |
if (!gpt_params_parse(argc, argv, params)) { | |
return 1; | |
} | |
params.embedding = true; | |
print_build_info(); | |
if (params.seed == LLAMA_DEFAULT_SEED) { | |
params.seed = time(NULL); | |
} | |
fprintf(stderr, "%s: seed = %u\n", __func__, params.seed); | |
std::mt19937 rng(params.seed); | |
if (params.random_prompt) { | |
params.prompt = gpt_random_prompt(rng); | |
} | |
llama_backend_init(params.numa); | |
llama_model * model; | |
llama_context * ctx; | |
// load the model | |
std::tie(model, ctx) = llama_init_from_gpt_params(params); | |
if (model == NULL) { | |
fprintf(stderr, "%s: error: unable to load model\n", __func__); | |
return 1; | |
} | |
const int n_ctx_train = llama_n_ctx_train(model); | |
const int n_ctx = llama_n_ctx(ctx); | |
if (n_ctx > n_ctx_train) { | |
fprintf(stderr, "%s: warning: model was trained on only %d context tokens (%d specified)\n", | |
__func__, n_ctx_train, n_ctx); | |
} | |
// print system information | |
{ | |
fprintf(stderr, "\n"); | |
fprintf(stderr, "%s\n", get_system_info(params).c_str()); | |
} | |
int n_past = 0; | |
// tokenize the prompt | |
auto embd_inp = ::llama_tokenize(ctx, params.prompt, true); | |
if (params.verbose_prompt) { | |
fprintf(stderr, "\n"); | |
fprintf(stderr, "%s: prompt: '%s'\n", __func__, params.prompt.c_str()); | |
fprintf(stderr, "%s: number of tokens in prompt = %zu\n", __func__, embd_inp.size()); | |
for (int i = 0; i < (int) embd_inp.size(); i++) { | |
fprintf(stderr, "%6d -> '%s'\n", embd_inp[i], llama_token_to_piece(ctx, embd_inp[i]).c_str()); | |
} | |
fprintf(stderr, "\n"); | |
} | |
if (embd_inp.size() > (size_t)n_ctx) { | |
fprintf(stderr, "%s: error: prompt is longer than the context window (%zu tokens, n_ctx = %d)\n", | |
__func__, embd_inp.size(), n_ctx); | |
return 1; | |
} | |
while (!embd_inp.empty()) { | |
int n_tokens = std::min(params.n_batch, (int) embd_inp.size()); | |
if (llama_decode(ctx, llama_batch_get_one(embd_inp.data(), n_tokens, n_past, 0))) { | |
fprintf(stderr, "%s : failed to eval\n", __func__); | |
return 1; | |
} | |
n_past += n_tokens; | |
embd_inp.erase(embd_inp.begin(), embd_inp.begin() + n_tokens); | |
} | |
const int n_embd = llama_n_embd(model); | |
const auto * embeddings = llama_get_embeddings(ctx); | |
for (int i = 0; i < n_embd; i++) { | |
printf("%f ", embeddings[i]); | |
} | |
printf("\n"); | |
llama_print_timings(ctx); | |
llama_free(ctx); | |
llama_free_model(model); | |
llama_backend_free(); | |
return 0; | |
} | |