Spaces:
Runtime error
Runtime error
Upload dis.py
Browse files
dis.py
ADDED
@@ -0,0 +1,225 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# -*- coding: utf-8 -*-
|
2 |
+
"""DIS.ipynb
|
3 |
+
|
4 |
+
Automatically generated by Colaboratory.
|
5 |
+
|
6 |
+
Original file is located at
|
7 |
+
https://colab.research.google.com/drive/1MI9utM7GJbz0w_zw1GJNU-ay15SzZHIN
|
8 |
+
|
9 |
+
# Clone official repo
|
10 |
+
"""
|
11 |
+
|
12 |
+
# Commented out IPython magic to ensure Python compatibility.
|
13 |
+
! git clone https://github.com/xuebinqin/DIS
|
14 |
+
|
15 |
+
# %cd ./DIS/IS-Net
|
16 |
+
|
17 |
+
!pip install gdown
|
18 |
+
|
19 |
+
!mkdir ./saved_models
|
20 |
+
|
21 |
+
"""# Imports"""
|
22 |
+
|
23 |
+
import numpy as np
|
24 |
+
from PIL import Image
|
25 |
+
import torch
|
26 |
+
from torch.autograd import Variable
|
27 |
+
from torchvision import transforms
|
28 |
+
import torch.nn.functional as F
|
29 |
+
import gdown
|
30 |
+
import os
|
31 |
+
|
32 |
+
import requests
|
33 |
+
import matplotlib.pyplot as plt
|
34 |
+
from io import BytesIO
|
35 |
+
|
36 |
+
# project imports
|
37 |
+
from data_loader_cache import normalize, im_reader, im_preprocess
|
38 |
+
from models import *
|
39 |
+
|
40 |
+
"""# Helpers"""
|
41 |
+
|
42 |
+
drive_link = "https://drive.google.com/uc?id=1XHIzgTzY5BQHw140EDIgwIb53K659ENH"
|
43 |
+
|
44 |
+
# Specify the local path and filename
|
45 |
+
local_path = "/content/DIS/IS-Net/saved_models/isnet.pth"
|
46 |
+
|
47 |
+
# Download the file
|
48 |
+
gdown.download(drive_link, local_path, quiet=False)
|
49 |
+
|
50 |
+
device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
51 |
+
|
52 |
+
# Download official weights
|
53 |
+
|
54 |
+
|
55 |
+
|
56 |
+
class GOSNormalize(object):
|
57 |
+
'''
|
58 |
+
Normalize the Image using torch.transforms
|
59 |
+
'''
|
60 |
+
def __init__(self, mean=[0.485,0.456,0.406], std=[0.229,0.224,0.225]):
|
61 |
+
self.mean = mean
|
62 |
+
self.std = std
|
63 |
+
|
64 |
+
def __call__(self,image):
|
65 |
+
image = normalize(image,self.mean,self.std)
|
66 |
+
return image
|
67 |
+
|
68 |
+
|
69 |
+
transform = transforms.Compose([GOSNormalize([0.5,0.5,0.5],[1.0,1.0,1.0])])
|
70 |
+
|
71 |
+
def load_image(im_path, hypar):
|
72 |
+
if im_path.startswith("http"):
|
73 |
+
im_path = BytesIO(requests.get(im_path).content)
|
74 |
+
|
75 |
+
im = im_reader(im_path)
|
76 |
+
im, im_shp = im_preprocess(im, hypar["cache_size"])
|
77 |
+
im = torch.divide(im,255.0)
|
78 |
+
shape = torch.from_numpy(np.array(im_shp))
|
79 |
+
return transform(im).unsqueeze(0), shape.unsqueeze(0) # make a batch of image, shape
|
80 |
+
|
81 |
+
|
82 |
+
def build_model(hypar,device):
|
83 |
+
net = hypar["model"]#GOSNETINC(3,1)
|
84 |
+
|
85 |
+
# convert to half precision
|
86 |
+
if(hypar["model_digit"]=="half"):
|
87 |
+
net.half()
|
88 |
+
for layer in net.modules():
|
89 |
+
if isinstance(layer, nn.BatchNorm2d):
|
90 |
+
layer.float()
|
91 |
+
|
92 |
+
net.to(device)
|
93 |
+
|
94 |
+
if(hypar["restore_model"]!=""):
|
95 |
+
net.load_state_dict(torch.load(hypar["model_path"]+"/"+hypar["restore_model"],map_location=device))
|
96 |
+
net.to(device)
|
97 |
+
net.eval()
|
98 |
+
return net
|
99 |
+
|
100 |
+
|
101 |
+
def predict(net, inputs_val, shapes_val, hypar, device):
|
102 |
+
'''
|
103 |
+
Given an Image, predict the mask
|
104 |
+
'''
|
105 |
+
net.eval()
|
106 |
+
|
107 |
+
if(hypar["model_digit"]=="full"):
|
108 |
+
inputs_val = inputs_val.type(torch.FloatTensor)
|
109 |
+
else:
|
110 |
+
inputs_val = inputs_val.type(torch.HalfTensor)
|
111 |
+
|
112 |
+
|
113 |
+
inputs_val_v = Variable(inputs_val, requires_grad=False).to(device) # wrap inputs in Variable
|
114 |
+
|
115 |
+
ds_val = net(inputs_val_v)[0] # list of 6 results
|
116 |
+
|
117 |
+
pred_val = ds_val[0][0,:,:,:] # B x 1 x H x W # we want the first one which is the most accurate prediction
|
118 |
+
|
119 |
+
## recover the prediction spatial size to the orignal image size
|
120 |
+
pred_val = torch.squeeze(F.upsample(torch.unsqueeze(pred_val,0),(shapes_val[0][0],shapes_val[0][1]),mode='bilinear'))
|
121 |
+
|
122 |
+
ma = torch.max(pred_val)
|
123 |
+
mi = torch.min(pred_val)
|
124 |
+
pred_val = (pred_val-mi)/(ma-mi) # max = 1
|
125 |
+
|
126 |
+
if device == 'cuda': torch.cuda.empty_cache()
|
127 |
+
return (pred_val.detach().cpu().numpy()*255).astype(np.uint8) # it is the mask we need
|
128 |
+
|
129 |
+
"""# Set Parameters"""
|
130 |
+
|
131 |
+
hypar = {} # paramters for inferencing
|
132 |
+
|
133 |
+
|
134 |
+
hypar["model_path"] ="./saved_models" ## load trained weights from this path
|
135 |
+
hypar["restore_model"] = "isnet.pth" ## name of the to-be-loaded weights
|
136 |
+
hypar["interm_sup"] = False ## indicate if activate intermediate feature supervision
|
137 |
+
|
138 |
+
## choose floating point accuracy --
|
139 |
+
hypar["model_digit"] = "full" ## indicates "half" or "full" accuracy of float number
|
140 |
+
hypar["seed"] = 0
|
141 |
+
|
142 |
+
hypar["cache_size"] = [1024, 1024] ## cached input spatial resolution, can be configured into different size
|
143 |
+
|
144 |
+
## data augmentation parameters ---
|
145 |
+
hypar["input_size"] = [1024, 1024] ## mdoel input spatial size, usually use the same value hypar["cache_size"], which means we don't further resize the images
|
146 |
+
hypar["crop_size"] = [1024, 1024] ## random crop size from the input, it is usually set as smaller than hypar["cache_size"], e.g., [920,920] for data augmentation
|
147 |
+
|
148 |
+
hypar["model"] = ISNetDIS()
|
149 |
+
|
150 |
+
"""# Build Model"""
|
151 |
+
|
152 |
+
net = build_model(hypar, device)
|
153 |
+
|
154 |
+
"""# Predict Mask"""
|
155 |
+
|
156 |
+
gsheetid = "1n9kk7IHyBzkw5e08wpjjt-Ry5aE_thqGrJ97rMeN-K4"
|
157 |
+
sheet_name = "sarvm"
|
158 |
+
|
159 |
+
gsheet_url = "https://docs.google.com/spreadsheets/d/{}/gviz/tq?tqx=out:csv&sheet={}".format(gsheetid, sheet_name)
|
160 |
+
|
161 |
+
gsheet_url
|
162 |
+
|
163 |
+
import pandas as pd
|
164 |
+
df = pd.read_csv(gsheet_url)
|
165 |
+
|
166 |
+
image_path = df.iloc[-1]['Image']
|
167 |
+
|
168 |
+
drive_link = image_path
|
169 |
+
|
170 |
+
# Specify the local path and filename
|
171 |
+
local_path = "/content/DIS/IS-Net/saved_models/input2.jpg"
|
172 |
+
|
173 |
+
# Download the file
|
174 |
+
gdown.download(drive_link, local_path, quiet=False)
|
175 |
+
|
176 |
+
from google.colab.patches import cv2_imshow
|
177 |
+
from PIL import Image
|
178 |
+
image_path = "/content/DIS/IS-Net/saved_models/input2.jpg"
|
179 |
+
# image_bytes = BytesIO(requests.get(image_path).content)
|
180 |
+
# print(image_bytes)
|
181 |
+
image_tensor, orig_size = load_image(image_path, hypar)
|
182 |
+
mask = predict(net,image_tensor,orig_size, hypar, device)
|
183 |
+
image = Image.open(image_path)
|
184 |
+
|
185 |
+
f, ax = plt.subplots(1,2, figsize = (35,20))
|
186 |
+
|
187 |
+
# ax[0].imshow(np.array(Image.open(image_bytes))) # Original image
|
188 |
+
# cv2_imshow(image_path)
|
189 |
+
|
190 |
+
ax[0].imshow(mask, cmap = 'gray') # retouched image
|
191 |
+
|
192 |
+
# ax[0].set_title("Original Image")
|
193 |
+
ax[0].set_title("Mask")
|
194 |
+
|
195 |
+
plt.show()
|
196 |
+
|
197 |
+
import cv2
|
198 |
+
image = cv2.imread(image_path)
|
199 |
+
h, w , _ = image.shape
|
200 |
+
# print(h)
|
201 |
+
# print(w)
|
202 |
+
# print(_)
|
203 |
+
# print(image)
|
204 |
+
h, w , _ = image.shape
|
205 |
+
# print(h)
|
206 |
+
# print(w)
|
207 |
+
# print(_)
|
208 |
+
# new_image = np.zeros_like(image)
|
209 |
+
# new_image[mask] = image[mask]
|
210 |
+
new_image = cv2.bitwise_and(image, image, mask=mask)
|
211 |
+
transparent_bg = np.zeros((new_image.shape[0],new_image.shape[1], new_image.shape[2]+1) , dtype=np.uint8)
|
212 |
+
|
213 |
+
# Apply the mask to the transparent background
|
214 |
+
transparent_bg[:, :, :3] = new_image
|
215 |
+
|
216 |
+
# Set the alpha channel using the mask
|
217 |
+
transparent_bg[:, :, 3] = mask
|
218 |
+
|
219 |
+
# Save the new image with a transparent background
|
220 |
+
output_path = "/content/output.png"
|
221 |
+
cv2.imwrite(output_path, transparent_bg)
|
222 |
+
# Save the new image
|
223 |
+
# output_path = "/content/output.jpg"
|
224 |
+
# cv2.imwrite(output_path, new_image)
|
225 |
+
|