bg_remover_v3 / app.py
Imadsarvm's picture
url test
29b2f06 verified
raw
history blame
2.48 kB
import numpy as np
import torch
import torch.nn.functional as F
from torchvision.transforms.functional import normalize
import gradio as gr
from briarmbg import BriaRMBG
import PIL
from PIL import Image
import requests
from io import BytesIO
net = BriaRMBG.from_pretrained("briaai/RMBG-1.4")
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
net.to(device)
def resize_image(image):
image = image.convert('RGB')
model_input_size = (1024, 1024)
image = image.resize(model_input_size, Image.BILINEAR)
return image
def process(image=None, url=None):
if url:
response = requests.get(url)
image = Image.open(BytesIO(response.content))
else:
image = Image.fromarray(image)
w, h = orig_im_size = image.size
image = resize_image(image)
im_np = np.array(image)
im_tensor = torch.tensor(im_np, dtype=torch.float32).permute(2, 0, 1)
im_tensor = torch.unsqueeze(im_tensor, 0)
im_tensor = torch.divide(im_tensor, 255.0)
im_tensor = normalize(im_tensor, [0.5, 0.5, 0.5], [1.0, 1.0, 1.0])
if torch.cuda.is_available():
im_tensor = im_tensor.cuda()
result = net(im_tensor)
result = torch.squeeze(F.interpolate(result[0][0], size=(h, w), mode='bilinear'), 0)
ma = torch.max(result)
mi = torch.min(result)
result = (result - mi) / (ma - mi)
im_array = (result * 255).cpu().data.numpy().astype(np.uint8)
pil_im = Image.fromarray(np.squeeze(im_array))
new_im = Image.new("RGBA", pil_im.size, (0, 0, 0, 0))
new_im.paste(image, mask=pil_im)
return new_im
title = "Background Removal"
description = r"""Background removal model developed by <a href='https://BRIA.AI' target='_blank'><b>BRIA.AI</b></a>, trained on a carefully selected dataset and is available as an open-source model for non-commercial use.<br>
For test upload your image and wait. Read more at model card <a href='https://huggingface.co/briaai/RMBG-1.4' target='_blank'><b>briaai/RMBG-1.4</b></a>.<br>
"""
examples = [['./input.jpg'],]
inputs = [
gr.Image(source="upload", tool="editor", type="numpy", label="Upload Image"),
gr.Textbox(label="Image URL", placeholder="Enter the URL of an image")
]
output = gr.Image(type="pil", label="Image without background", show_download_button=True)
demo = gr.Interface(fn=process, inputs=inputs, outputs=output, examples=examples, title=title, description=description)
if __name__ == "__main__":
demo.launch(share=False)