Spaces:
Running
Running
new test
Browse files
app.py
CHANGED
@@ -3,98 +3,95 @@ import torch
|
|
3 |
import torch.nn.functional as F
|
4 |
from torchvision.transforms.functional import normalize
|
5 |
import gradio as gr
|
6 |
-
from gradio_imageslider import ImageSlider
|
7 |
from briarmbg import BriaRMBG
|
8 |
import PIL
|
9 |
from PIL import Image
|
10 |
from typing import Tuple
|
11 |
-
|
|
|
12 |
|
13 |
net = BriaRMBG.from_pretrained("briaai/RMBG-1.4")
|
14 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
15 |
net.to(device)
|
16 |
|
17 |
-
|
18 |
def resize_image(image):
|
19 |
image = image.convert('RGB')
|
20 |
model_input_size = (1024, 1024)
|
21 |
image = image.resize(model_input_size, Image.BILINEAR)
|
22 |
return image
|
23 |
|
|
|
|
|
|
|
|
|
|
|
|
|
24 |
|
25 |
-
def
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
#inference
|
40 |
-
result=net(im_tensor)
|
41 |
-
# post process
|
42 |
-
result = torch.squeeze(F.interpolate(result[0][0], size=(h,w), mode='bilinear') ,0)
|
43 |
-
ma = torch.max(result)
|
44 |
-
mi = torch.min(result)
|
45 |
-
result = (result-mi)/(ma-mi)
|
46 |
-
# image to pil
|
47 |
-
im_array = (result*255).cpu().data.numpy().astype(np.uint8)
|
48 |
-
pil_im = Image.fromarray(np.squeeze(im_array))
|
49 |
-
# paste the mask on the original image
|
50 |
-
new_im = Image.new("RGBA", pil_im.size, (0,0,0,0))
|
51 |
-
new_im.paste(orig_image, mask=pil_im)
|
52 |
-
# new_orig_image = orig_image.convert('RGBA')
|
53 |
-
|
54 |
-
return new_im
|
55 |
-
# return [new_orig_image, new_im]
|
56 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
57 |
|
58 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
59 |
|
60 |
-
# with block:
|
61 |
-
# gr.Markdown("## BRIA RMBG 1.4")
|
62 |
-
# gr.HTML('''
|
63 |
-
# <p style="margin-bottom: 10px; font-size: 94%">
|
64 |
-
# This is a demo for BRIA RMBG 1.4 that using
|
65 |
-
# <a href="https://huggingface.co/briaai/RMBG-1.4" target="_blank">BRIA RMBG-1.4 image matting model</a> as backbone.
|
66 |
-
# </p>
|
67 |
-
# ''')
|
68 |
-
# with gr.Row():
|
69 |
-
# with gr.Column():
|
70 |
-
# input_image = gr.Image(sources=None, type="pil") # None for upload, ctrl+v and webcam
|
71 |
-
# # input_image = gr.Image(sources=None, type="numpy") # None for upload, ctrl+v and webcam
|
72 |
-
# run_button = gr.Button(value="Run")
|
73 |
-
|
74 |
-
# with gr.Column():
|
75 |
-
# result_gallery = gr.Gallery(label='Output', show_label=False, elem_id="gallery", columns=[1], height='auto')
|
76 |
-
# ips = [input_image]
|
77 |
-
# run_button.click(fn=process, inputs=ips, outputs=[result_gallery])
|
78 |
-
|
79 |
-
# block.launch(debug = True)
|
80 |
-
|
81 |
-
# block = gr.Blocks().queue()
|
82 |
-
|
83 |
-
gr.Markdown("## BRIA RMBG 1.4")
|
84 |
-
gr.HTML('''
|
85 |
-
<p style="margin-bottom: 10px; font-size: 94%">
|
86 |
-
This is a demo for BRIA RMBG 1.4 that using
|
87 |
-
<a href="https://huggingface.co/briaai/RMBG-1.4" target="_blank">BRIA RMBG-1.4 image matting model</a> as backbone.
|
88 |
-
</p>
|
89 |
-
''')
|
90 |
title = "Background Removal"
|
91 |
description = r"""Background removal model developed by <a href='https://BRIA.AI' target='_blank'><b>BRIA.AI</b></a>, trained on a carefully selected dataset and is available as an open-source model for non-commercial use.<br>
|
92 |
For test upload your image and wait. Read more at model card <a href='https://huggingface.co/briaai/RMBG-1.4' target='_blank'><b>briaai/RMBG-1.4</b></a>.<br>
|
93 |
"""
|
94 |
examples = [['./input.jpg'],]
|
95 |
-
|
96 |
-
|
97 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
98 |
|
99 |
if __name__ == "__main__":
|
100 |
demo.launch(share=False)
|
|
|
3 |
import torch.nn.functional as F
|
4 |
from torchvision.transforms.functional import normalize
|
5 |
import gradio as gr
|
|
|
6 |
from briarmbg import BriaRMBG
|
7 |
import PIL
|
8 |
from PIL import Image
|
9 |
from typing import Tuple
|
10 |
+
import requests
|
11 |
+
from io import BytesIO
|
12 |
|
13 |
net = BriaRMBG.from_pretrained("briaai/RMBG-1.4")
|
14 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
15 |
net.to(device)
|
16 |
|
|
|
17 |
def resize_image(image):
|
18 |
image = image.convert('RGB')
|
19 |
model_input_size = (1024, 1024)
|
20 |
image = image.resize(model_input_size, Image.BILINEAR)
|
21 |
return image
|
22 |
|
23 |
+
def get_url_image(url):
|
24 |
+
headers = {'User-Agent': 'gradio-app'}
|
25 |
+
response = requests.get(url, headers=headers)
|
26 |
+
print(f"Response status code: {response.status_code}")
|
27 |
+
response.raise_for_status() # Raise an error for bad status codes
|
28 |
+
return BytesIO(response.content)
|
29 |
|
30 |
+
def load_image(image_source):
|
31 |
+
try:
|
32 |
+
if isinstance(image_source, str): # Check if input is a URL
|
33 |
+
print(f"Loading image from URL: {image_source}")
|
34 |
+
image = Image.open(get_url_image(image_source))
|
35 |
+
else:
|
36 |
+
print("Loading image from file upload")
|
37 |
+
image = Image.fromarray(image_source)
|
38 |
+
print("Image loaded successfully")
|
39 |
+
return image
|
40 |
+
except Exception as e:
|
41 |
+
print(f"Error loading image: {e}")
|
42 |
+
raise
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
43 |
|
44 |
+
def process(image_source):
|
45 |
+
try:
|
46 |
+
print("Processing image")
|
47 |
+
# Load and prepare input
|
48 |
+
orig_image = load_image(image_source)
|
49 |
+
w, h = orig_im_size = orig_image.size
|
50 |
+
image = resize_image(orig_image)
|
51 |
+
im_np = np.array(image)
|
52 |
+
im_tensor = torch.tensor(im_np, dtype=torch.float32).permute(2, 0, 1)
|
53 |
+
im_tensor = torch.unsqueeze(im_tensor, 0)
|
54 |
+
im_tensor = torch.divide(im_tensor, 255.0)
|
55 |
+
im_tensor = normalize(im_tensor, [0.5, 0.5, 0.5], [1.0, 1.0, 1.0])
|
56 |
+
if torch.cuda.is_available():
|
57 |
+
im_tensor = im_tensor.cuda()
|
58 |
|
59 |
+
# Inference
|
60 |
+
result = net(im_tensor)
|
61 |
+
# Post-process
|
62 |
+
result = torch.squeeze(F.interpolate(result[0][0], size=(h, w), mode='bilinear'), 0)
|
63 |
+
ma = torch.max(result)
|
64 |
+
mi = torch.min(result)
|
65 |
+
result = (result - mi) / (ma - mi)
|
66 |
+
# Image to PIL
|
67 |
+
im_array = (result * 255).cpu().data.numpy().astype(np.uint8)
|
68 |
+
pil_im = Image.fromarray(np.squeeze(im_array))
|
69 |
+
# Paste the mask on the original image
|
70 |
+
new_im = Image.new("RGBA", pil_im.size, (0, 0, 0, 0))
|
71 |
+
new_im.paste(orig_image, mask=pil_im)
|
72 |
+
print("Image processed successfully")
|
73 |
+
return new_im
|
74 |
+
except Exception as e:
|
75 |
+
print(f"Error during processing: {e}")
|
76 |
+
return f"Error: {e}"
|
77 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
78 |
title = "Background Removal"
|
79 |
description = r"""Background removal model developed by <a href='https://BRIA.AI' target='_blank'><b>BRIA.AI</b></a>, trained on a carefully selected dataset and is available as an open-source model for non-commercial use.<br>
|
80 |
For test upload your image and wait. Read more at model card <a href='https://huggingface.co/briaai/RMBG-1.4' target='_blank'><b>briaai/RMBG-1.4</b></a>.<br>
|
81 |
"""
|
82 |
examples = [['./input.jpg'],]
|
83 |
+
|
84 |
+
demo = gr.Interface(
|
85 |
+
fn=process,
|
86 |
+
inputs=[
|
87 |
+
gr.Image(type="numpy", label="Upload Image"),
|
88 |
+
gr.Textbox(label="Image URL")
|
89 |
+
],
|
90 |
+
outputs="image",
|
91 |
+
examples=examples,
|
92 |
+
title=title,
|
93 |
+
description=description
|
94 |
+
)
|
95 |
|
96 |
if __name__ == "__main__":
|
97 |
demo.launch(share=False)
|