Spaces:
Runtime error
Runtime error
Upload app.py
Browse files
app.py
ADDED
@@ -0,0 +1,116 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import os
|
3 |
+
import numpy as np
|
4 |
+
import torch
|
5 |
+
from models.network_swinir import SwinIR
|
6 |
+
|
7 |
+
|
8 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
9 |
+
print("device: %s" % device)
|
10 |
+
default_models = {
|
11 |
+
"sr": "weights/003_realSR_BSRGAN_DFO_s64w8_SwinIR-M_x4_GAN.pth",
|
12 |
+
"denoise": "weights/005_colorDN_DFWB_s128w8_SwinIR-M_noise25.pth"
|
13 |
+
}
|
14 |
+
torch.backends.cudnn.enabled = True
|
15 |
+
torch.backends.cudnn.benchmark = True
|
16 |
+
|
17 |
+
|
18 |
+
denoise_model = SwinIR(upscale=1, in_chans=3, img_size=128, window_size=8,
|
19 |
+
img_range=1., depths=[6, 6, 6, 6, 6, 6], embed_dim=180, num_heads=[6, 6, 6, 6, 6, 6],
|
20 |
+
mlp_ratio=2, upsampler='', resi_connection='1conv').to(device)
|
21 |
+
param_key_g = 'params'
|
22 |
+
try:
|
23 |
+
pretrained_model = torch.load(default_models["denoise"])
|
24 |
+
denoise_model.load_state_dict(pretrained_model[param_key_g] if param_key_g in pretrained_model.keys() else pretrained_model, strict=True)
|
25 |
+
except: print("Loading model failed")
|
26 |
+
denoise_model.eval()
|
27 |
+
|
28 |
+
sr_model = SwinIR(upscale=4, in_chans=3, img_size=64, window_size=8,
|
29 |
+
img_range=1., depths=[6, 6, 6, 6, 6, 6], embed_dim=180, num_heads=[6, 6, 6, 6, 6, 6],
|
30 |
+
mlp_ratio=2, upsampler='nearest+conv', resi_connection='1conv').to(device)
|
31 |
+
param_key_g = 'params_ema'
|
32 |
+
try:
|
33 |
+
pretrained_model = torch.load(default_models["sr"])
|
34 |
+
sr_model.load_state_dict(pretrained_model[param_key_g] if param_key_g in pretrained_model.keys() else pretrained_model, strict=True)
|
35 |
+
except: print("Loading model failed")
|
36 |
+
sr_model.eval()
|
37 |
+
|
38 |
+
|
39 |
+
def sr(input_img):
|
40 |
+
|
41 |
+
window_size = 8
|
42 |
+
# read image
|
43 |
+
img_lq = input_img.astype(np.float32) / 255.
|
44 |
+
img_lq = np.transpose(img_lq if img_lq.shape[2] == 1 else img_lq[:, :, [2, 1, 0]], (2, 0, 1)) # HCW-BGR to CHW-RGB
|
45 |
+
img_lq = torch.from_numpy(img_lq).float().unsqueeze(0).to(device) # CHW-RGB to NCHW-RGB
|
46 |
+
|
47 |
+
# inference
|
48 |
+
with torch.no_grad():
|
49 |
+
# pad input image to be a multiple of window_size
|
50 |
+
_, _, h_old, w_old = img_lq.size()
|
51 |
+
h_pad = (h_old // window_size + 1) * window_size - h_old
|
52 |
+
w_pad = (w_old // window_size + 1) * window_size - w_old
|
53 |
+
img_lq = torch.cat([img_lq, torch.flip(img_lq, [2])], 2)[:, :, :h_old + h_pad, :]
|
54 |
+
img_lq = torch.cat([img_lq, torch.flip(img_lq, [3])], 3)[:, :, :, :w_old + w_pad]
|
55 |
+
output = sr_model(img_lq)
|
56 |
+
output = output[..., :h_old * 4, :w_old * 4]
|
57 |
+
|
58 |
+
# save image
|
59 |
+
output = output.data.squeeze().float().cpu().clamp_(0, 1).numpy()
|
60 |
+
if output.ndim == 3:
|
61 |
+
output = np.transpose(output[[2, 1, 0], :, :], (1, 2, 0)) # CHW-RGB to HCW-BGR
|
62 |
+
output = (output * 255.0).round().astype(np.uint8) # float32 to uint8
|
63 |
+
|
64 |
+
return output
|
65 |
+
|
66 |
+
def denoise(input_img):
|
67 |
+
|
68 |
+
window_size = 8
|
69 |
+
# read image
|
70 |
+
img_lq = input_img.astype(np.float32) / 255.
|
71 |
+
img_lq = np.transpose(img_lq if img_lq.shape[2] == 1 else img_lq[:, :, [2, 1, 0]], (2, 0, 1)) # HCW-BGR to CHW-RGB
|
72 |
+
img_lq = torch.from_numpy(img_lq).float().unsqueeze(0).to(device) # CHW-RGB to NCHW-RGB
|
73 |
+
|
74 |
+
# inference
|
75 |
+
with torch.no_grad():
|
76 |
+
# pad input image to be a multiple of window_size
|
77 |
+
_, _, h_old, w_old = img_lq.size()
|
78 |
+
h_pad = (h_old // window_size + 1) * window_size - h_old
|
79 |
+
w_pad = (w_old // window_size + 1) * window_size - w_old
|
80 |
+
img_lq = torch.cat([img_lq, torch.flip(img_lq, [2])], 2)[:, :, :h_old + h_pad, :]
|
81 |
+
img_lq = torch.cat([img_lq, torch.flip(img_lq, [3])], 3)[:, :, :, :w_old + w_pad]
|
82 |
+
output = denoise_model(img_lq)
|
83 |
+
output = output[..., :h_old * 4, :w_old * 4]
|
84 |
+
|
85 |
+
# save image
|
86 |
+
output = output.data.squeeze().float().cpu().clamp_(0, 1).numpy()
|
87 |
+
if output.ndim == 3:
|
88 |
+
output = np.transpose(output[[2, 1, 0], :, :], (1, 2, 0)) # CHW-RGB to HCW-BGR
|
89 |
+
output = (output * 255.0).round().astype(np.uint8) # float32 to uint8
|
90 |
+
|
91 |
+
return output
|
92 |
+
|
93 |
+
title = " AISeed AI Application Demo "
|
94 |
+
description = "# A Demo of Deep Learning for Image Restoration"
|
95 |
+
example_list = [["examples/" + example] for example in os.listdir("examples")]
|
96 |
+
|
97 |
+
with gr.Blocks() as demo:
|
98 |
+
demo.title = title
|
99 |
+
gr.Markdown(description)
|
100 |
+
with gr.Row():
|
101 |
+
with gr.Column():
|
102 |
+
im = gr.Image(label="Input Image")
|
103 |
+
im_2 = gr.Image(label="Enhanced Image")
|
104 |
+
|
105 |
+
with gr.Column():
|
106 |
+
|
107 |
+
btn1 = gr.Button(value="Enhance Resolution")
|
108 |
+
btn1.click(sr, inputs=[im], outputs=[im_2])
|
109 |
+
btn2 = gr.Button(value="Denoise")
|
110 |
+
btn2.click(denoise, inputs=[im], outputs=[im_2])
|
111 |
+
gr.Examples(examples=example_list,
|
112 |
+
inputs=[im],
|
113 |
+
outputs=[im_2])
|
114 |
+
|
115 |
+
if __name__ == "__main__":
|
116 |
+
demo.launch()
|