Imadsarvm commited on
Commit
d77462a
·
1 Parent(s): d5a7913

Delete models/models_network_swinir.py

Browse files
Files changed (1) hide show
  1. models/models_network_swinir.py +0 -866
models/models_network_swinir.py DELETED
@@ -1,866 +0,0 @@
1
- # -----------------------------------------------------------------------------------
2
- # SwinIR: Image Restoration Using Swin Transformer, https://arxiv.org/abs/2108.10257
3
- # Originally Written by Ze Liu, Modified by Jingyun Liang.
4
- # -----------------------------------------------------------------------------------
5
-
6
- import math
7
- import torch
8
- import torch.nn as nn
9
- import torch.nn.functional as F
10
- import torch.utils.checkpoint as checkpoint
11
- from timm.models.layers import DropPath, to_2tuple, trunc_normal_
12
-
13
-
14
- class Mlp(nn.Module):
15
- def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.):
16
- super().__init__()
17
- out_features = out_features or in_features
18
- hidden_features = hidden_features or in_features
19
- self.fc1 = nn.Linear(in_features, hidden_features)
20
- self.act = act_layer()
21
- self.fc2 = nn.Linear(hidden_features, out_features)
22
- self.drop = nn.Dropout(drop)
23
-
24
- def forward(self, x):
25
- x = self.fc1(x)
26
- x = self.act(x)
27
- x = self.drop(x)
28
- x = self.fc2(x)
29
- x = self.drop(x)
30
- return x
31
-
32
-
33
- def window_partition(x, window_size):
34
- """
35
- Args:
36
- x: (B, H, W, C)
37
- window_size (int): window size
38
-
39
- Returns:
40
- windows: (num_windows*B, window_size, window_size, C)
41
- """
42
- B, H, W, C = x.shape
43
- x = x.view(B, H // window_size, window_size, W // window_size, window_size, C)
44
- windows = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(-1, window_size, window_size, C)
45
- return windows
46
-
47
-
48
- def window_reverse(windows, window_size, H, W):
49
- """
50
- Args:
51
- windows: (num_windows*B, window_size, window_size, C)
52
- window_size (int): Window size
53
- H (int): Height of image
54
- W (int): Width of image
55
-
56
- Returns:
57
- x: (B, H, W, C)
58
- """
59
- B = int(windows.shape[0] / (H * W / window_size / window_size))
60
- x = windows.view(B, H // window_size, W // window_size, window_size, window_size, -1)
61
- x = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(B, H, W, -1)
62
- return x
63
-
64
-
65
- class WindowAttention(nn.Module):
66
- r""" Window based multi-head self attention (W-MSA) module with relative position bias.
67
- It supports both of shifted and non-shifted window.
68
-
69
- Args:
70
- dim (int): Number of input channels.
71
- window_size (tuple[int]): The height and width of the window.
72
- num_heads (int): Number of attention heads.
73
- qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True
74
- qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set
75
- attn_drop (float, optional): Dropout ratio of attention weight. Default: 0.0
76
- proj_drop (float, optional): Dropout ratio of output. Default: 0.0
77
- """
78
-
79
- def __init__(self, dim, window_size, num_heads, qkv_bias=True, qk_scale=None, attn_drop=0., proj_drop=0.):
80
-
81
- super().__init__()
82
- self.dim = dim
83
- self.window_size = window_size # Wh, Ww
84
- self.num_heads = num_heads
85
- head_dim = dim // num_heads
86
- self.scale = qk_scale or head_dim ** -0.5
87
-
88
- # define a parameter table of relative position bias
89
- self.relative_position_bias_table = nn.Parameter(
90
- torch.zeros((2 * window_size[0] - 1) * (2 * window_size[1] - 1), num_heads)) # 2*Wh-1 * 2*Ww-1, nH
91
-
92
- # get pair-wise relative position index for each token inside the window
93
- coords_h = torch.arange(self.window_size[0])
94
- coords_w = torch.arange(self.window_size[1])
95
- coords = torch.stack(torch.meshgrid([coords_h, coords_w])) # 2, Wh, Ww
96
- coords_flatten = torch.flatten(coords, 1) # 2, Wh*Ww
97
- relative_coords = coords_flatten[:, :, None] - coords_flatten[:, None, :] # 2, Wh*Ww, Wh*Ww
98
- relative_coords = relative_coords.permute(1, 2, 0).contiguous() # Wh*Ww, Wh*Ww, 2
99
- relative_coords[:, :, 0] += self.window_size[0] - 1 # shift to start from 0
100
- relative_coords[:, :, 1] += self.window_size[1] - 1
101
- relative_coords[:, :, 0] *= 2 * self.window_size[1] - 1
102
- relative_position_index = relative_coords.sum(-1) # Wh*Ww, Wh*Ww
103
- self.register_buffer("relative_position_index", relative_position_index)
104
-
105
- self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
106
- self.attn_drop = nn.Dropout(attn_drop)
107
- self.proj = nn.Linear(dim, dim)
108
-
109
- self.proj_drop = nn.Dropout(proj_drop)
110
-
111
- trunc_normal_(self.relative_position_bias_table, std=.02)
112
- self.softmax = nn.Softmax(dim=-1)
113
-
114
- def forward(self, x, mask=None):
115
- """
116
- Args:
117
- x: input features with shape of (num_windows*B, N, C)
118
- mask: (0/-inf) mask with shape of (num_windows, Wh*Ww, Wh*Ww) or None
119
- """
120
- B_, N, C = x.shape
121
- qkv = self.qkv(x).reshape(B_, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)
122
- q, k, v = qkv[0], qkv[1], qkv[2] # make torchscript happy (cannot use tensor as tuple)
123
-
124
- q = q * self.scale
125
- attn = (q @ k.transpose(-2, -1))
126
-
127
- relative_position_bias = self.relative_position_bias_table[self.relative_position_index.view(-1)].view(
128
- self.window_size[0] * self.window_size[1], self.window_size[0] * self.window_size[1], -1) # Wh*Ww,Wh*Ww,nH
129
- relative_position_bias = relative_position_bias.permute(2, 0, 1).contiguous() # nH, Wh*Ww, Wh*Ww
130
- attn = attn + relative_position_bias.unsqueeze(0)
131
-
132
- if mask is not None:
133
- nW = mask.shape[0]
134
- attn = attn.view(B_ // nW, nW, self.num_heads, N, N) + mask.unsqueeze(1).unsqueeze(0)
135
- attn = attn.view(-1, self.num_heads, N, N)
136
- attn = self.softmax(attn)
137
- else:
138
- attn = self.softmax(attn)
139
-
140
- attn = self.attn_drop(attn)
141
-
142
- x = (attn @ v).transpose(1, 2).reshape(B_, N, C)
143
- x = self.proj(x)
144
- x = self.proj_drop(x)
145
- return x
146
-
147
- def extra_repr(self) -> str:
148
- return f'dim={self.dim}, window_size={self.window_size}, num_heads={self.num_heads}'
149
-
150
- def flops(self, N):
151
- # calculate flops for 1 window with token length of N
152
- flops = 0
153
- # qkv = self.qkv(x)
154
- flops += N * self.dim * 3 * self.dim
155
- # attn = (q @ k.transpose(-2, -1))
156
- flops += self.num_heads * N * (self.dim // self.num_heads) * N
157
- # x = (attn @ v)
158
- flops += self.num_heads * N * N * (self.dim // self.num_heads)
159
- # x = self.proj(x)
160
- flops += N * self.dim * self.dim
161
- return flops
162
-
163
-
164
- class SwinTransformerBlock(nn.Module):
165
- r""" Swin Transformer Block.
166
-
167
- Args:
168
- dim (int): Number of input channels.
169
- input_resolution (tuple[int]): Input resulotion.
170
- num_heads (int): Number of attention heads.
171
- window_size (int): Window size.
172
- shift_size (int): Shift size for SW-MSA.
173
- mlp_ratio (float): Ratio of mlp hidden dim to embedding dim.
174
- qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True
175
- qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set.
176
- drop (float, optional): Dropout rate. Default: 0.0
177
- attn_drop (float, optional): Attention dropout rate. Default: 0.0
178
- drop_path (float, optional): Stochastic depth rate. Default: 0.0
179
- act_layer (nn.Module, optional): Activation layer. Default: nn.GELU
180
- norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm
181
- """
182
-
183
- def __init__(self, dim, input_resolution, num_heads, window_size=7, shift_size=0,
184
- mlp_ratio=4., qkv_bias=True, qk_scale=None, drop=0., attn_drop=0., drop_path=0.,
185
- act_layer=nn.GELU, norm_layer=nn.LayerNorm):
186
- super().__init__()
187
- self.dim = dim
188
- self.input_resolution = input_resolution
189
- self.num_heads = num_heads
190
- self.window_size = window_size
191
- self.shift_size = shift_size
192
- self.mlp_ratio = mlp_ratio
193
- if min(self.input_resolution) <= self.window_size:
194
- # if window size is larger than input resolution, we don't partition windows
195
- self.shift_size = 0
196
- self.window_size = min(self.input_resolution)
197
- assert 0 <= self.shift_size < self.window_size, "shift_size must in 0-window_size"
198
-
199
- self.norm1 = norm_layer(dim)
200
- self.attn = WindowAttention(
201
- dim, window_size=to_2tuple(self.window_size), num_heads=num_heads,
202
- qkv_bias=qkv_bias, qk_scale=qk_scale, attn_drop=attn_drop, proj_drop=drop)
203
-
204
- self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
205
- self.norm2 = norm_layer(dim)
206
- mlp_hidden_dim = int(dim * mlp_ratio)
207
- self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop)
208
-
209
- if self.shift_size > 0:
210
- attn_mask = self.calculate_mask(self.input_resolution)
211
- else:
212
- attn_mask = None
213
-
214
- self.register_buffer("attn_mask", attn_mask)
215
-
216
- def calculate_mask(self, x_size):
217
- # calculate attention mask for SW-MSA
218
- H, W = x_size
219
- img_mask = torch.zeros((1, H, W, 1)) # 1 H W 1
220
- h_slices = (slice(0, -self.window_size),
221
- slice(-self.window_size, -self.shift_size),
222
- slice(-self.shift_size, None))
223
- w_slices = (slice(0, -self.window_size),
224
- slice(-self.window_size, -self.shift_size),
225
- slice(-self.shift_size, None))
226
- cnt = 0
227
- for h in h_slices:
228
- for w in w_slices:
229
- img_mask[:, h, w, :] = cnt
230
- cnt += 1
231
-
232
- mask_windows = window_partition(img_mask, self.window_size) # nW, window_size, window_size, 1
233
- mask_windows = mask_windows.view(-1, self.window_size * self.window_size)
234
- attn_mask = mask_windows.unsqueeze(1) - mask_windows.unsqueeze(2)
235
- attn_mask = attn_mask.masked_fill(attn_mask != 0, float(-100.0)).masked_fill(attn_mask == 0, float(0.0))
236
-
237
- return attn_mask
238
-
239
- def forward(self, x, x_size):
240
- H, W = x_size
241
- B, L, C = x.shape
242
- # assert L == H * W, "input feature has wrong size"
243
-
244
- shortcut = x
245
- x = self.norm1(x)
246
- x = x.view(B, H, W, C)
247
-
248
- # cyclic shift
249
- if self.shift_size > 0:
250
- shifted_x = torch.roll(x, shifts=(-self.shift_size, -self.shift_size), dims=(1, 2))
251
- else:
252
- shifted_x = x
253
-
254
- # partition windows
255
- x_windows = window_partition(shifted_x, self.window_size) # nW*B, window_size, window_size, C
256
- x_windows = x_windows.view(-1, self.window_size * self.window_size, C) # nW*B, window_size*window_size, C
257
-
258
- # W-MSA/SW-MSA (to be compatible for testing on images whose shapes are the multiple of window size
259
- if self.input_resolution == x_size:
260
- attn_windows = self.attn(x_windows, mask=self.attn_mask) # nW*B, window_size*window_size, C
261
- else:
262
- attn_windows = self.attn(x_windows, mask=self.calculate_mask(x_size).to(x.device))
263
-
264
- # merge windows
265
- attn_windows = attn_windows.view(-1, self.window_size, self.window_size, C)
266
- shifted_x = window_reverse(attn_windows, self.window_size, H, W) # B H' W' C
267
-
268
- # reverse cyclic shift
269
- if self.shift_size > 0:
270
- x = torch.roll(shifted_x, shifts=(self.shift_size, self.shift_size), dims=(1, 2))
271
- else:
272
- x = shifted_x
273
- x = x.view(B, H * W, C)
274
-
275
- # FFN
276
- x = shortcut + self.drop_path(x)
277
- x = x + self.drop_path(self.mlp(self.norm2(x)))
278
-
279
- return x
280
-
281
- def extra_repr(self) -> str:
282
- return f"dim={self.dim}, input_resolution={self.input_resolution}, num_heads={self.num_heads}, " \
283
- f"window_size={self.window_size}, shift_size={self.shift_size}, mlp_ratio={self.mlp_ratio}"
284
-
285
- def flops(self):
286
- flops = 0
287
- H, W = self.input_resolution
288
- # norm1
289
- flops += self.dim * H * W
290
- # W-MSA/SW-MSA
291
- nW = H * W / self.window_size / self.window_size
292
- flops += nW * self.attn.flops(self.window_size * self.window_size)
293
- # mlp
294
- flops += 2 * H * W * self.dim * self.dim * self.mlp_ratio
295
- # norm2
296
- flops += self.dim * H * W
297
- return flops
298
-
299
-
300
- class PatchMerging(nn.Module):
301
- r""" Patch Merging Layer.
302
-
303
- Args:
304
- input_resolution (tuple[int]): Resolution of input feature.
305
- dim (int): Number of input channels.
306
- norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm
307
- """
308
-
309
- def __init__(self, input_resolution, dim, norm_layer=nn.LayerNorm):
310
- super().__init__()
311
- self.input_resolution = input_resolution
312
- self.dim = dim
313
- self.reduction = nn.Linear(4 * dim, 2 * dim, bias=False)
314
- self.norm = norm_layer(4 * dim)
315
-
316
- def forward(self, x):
317
- """
318
- x: B, H*W, C
319
- """
320
- H, W = self.input_resolution
321
- B, L, C = x.shape
322
- assert L == H * W, "input feature has wrong size"
323
- assert H % 2 == 0 and W % 2 == 0, f"x size ({H}*{W}) are not even."
324
-
325
- x = x.view(B, H, W, C)
326
-
327
- x0 = x[:, 0::2, 0::2, :] # B H/2 W/2 C
328
- x1 = x[:, 1::2, 0::2, :] # B H/2 W/2 C
329
- x2 = x[:, 0::2, 1::2, :] # B H/2 W/2 C
330
- x3 = x[:, 1::2, 1::2, :] # B H/2 W/2 C
331
- x = torch.cat([x0, x1, x2, x3], -1) # B H/2 W/2 4*C
332
- x = x.view(B, -1, 4 * C) # B H/2*W/2 4*C
333
-
334
- x = self.norm(x)
335
- x = self.reduction(x)
336
-
337
- return x
338
-
339
- def extra_repr(self) -> str:
340
- return f"input_resolution={self.input_resolution}, dim={self.dim}"
341
-
342
- def flops(self):
343
- H, W = self.input_resolution
344
- flops = H * W * self.dim
345
- flops += (H // 2) * (W // 2) * 4 * self.dim * 2 * self.dim
346
- return flops
347
-
348
-
349
- class BasicLayer(nn.Module):
350
- """ A basic Swin Transformer layer for one stage.
351
-
352
- Args:
353
- dim (int): Number of input channels.
354
- input_resolution (tuple[int]): Input resolution.
355
- depth (int): Number of blocks.
356
- num_heads (int): Number of attention heads.
357
- window_size (int): Local window size.
358
- mlp_ratio (float): Ratio of mlp hidden dim to embedding dim.
359
- qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True
360
- qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set.
361
- drop (float, optional): Dropout rate. Default: 0.0
362
- attn_drop (float, optional): Attention dropout rate. Default: 0.0
363
- drop_path (float | tuple[float], optional): Stochastic depth rate. Default: 0.0
364
- norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm
365
- downsample (nn.Module | None, optional): Downsample layer at the end of the layer. Default: None
366
- use_checkpoint (bool): Whether to use checkpointing to save memory. Default: False.
367
- """
368
-
369
- def __init__(self, dim, input_resolution, depth, num_heads, window_size,
370
- mlp_ratio=4., qkv_bias=True, qk_scale=None, drop=0., attn_drop=0.,
371
- drop_path=0., norm_layer=nn.LayerNorm, downsample=None, use_checkpoint=False):
372
-
373
- super().__init__()
374
- self.dim = dim
375
- self.input_resolution = input_resolution
376
- self.depth = depth
377
- self.use_checkpoint = use_checkpoint
378
-
379
- # build blocks
380
- self.blocks = nn.ModuleList([
381
- SwinTransformerBlock(dim=dim, input_resolution=input_resolution,
382
- num_heads=num_heads, window_size=window_size,
383
- shift_size=0 if (i % 2 == 0) else window_size // 2,
384
- mlp_ratio=mlp_ratio,
385
- qkv_bias=qkv_bias, qk_scale=qk_scale,
386
- drop=drop, attn_drop=attn_drop,
387
- drop_path=drop_path[i] if isinstance(drop_path, list) else drop_path,
388
- norm_layer=norm_layer)
389
- for i in range(depth)])
390
-
391
- # patch merging layer
392
- if downsample is not None:
393
- self.downsample = downsample(input_resolution, dim=dim, norm_layer=norm_layer)
394
- else:
395
- self.downsample = None
396
-
397
- def forward(self, x, x_size):
398
- for blk in self.blocks:
399
- if self.use_checkpoint:
400
- x = checkpoint.checkpoint(blk, x, x_size)
401
- else:
402
- x = blk(x, x_size)
403
- if self.downsample is not None:
404
- x = self.downsample(x)
405
- return x
406
-
407
- def extra_repr(self) -> str:
408
- return f"dim={self.dim}, input_resolution={self.input_resolution}, depth={self.depth}"
409
-
410
- def flops(self):
411
- flops = 0
412
- for blk in self.blocks:
413
- flops += blk.flops()
414
- if self.downsample is not None:
415
- flops += self.downsample.flops()
416
- return flops
417
-
418
-
419
- class RSTB(nn.Module):
420
- """Residual Swin Transformer Block (RSTB).
421
-
422
- Args:
423
- dim (int): Number of input channels.
424
- input_resolution (tuple[int]): Input resolution.
425
- depth (int): Number of blocks.
426
- num_heads (int): Number of attention heads.
427
- window_size (int): Local window size.
428
- mlp_ratio (float): Ratio of mlp hidden dim to embedding dim.
429
- qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True
430
- qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set.
431
- drop (float, optional): Dropout rate. Default: 0.0
432
- attn_drop (float, optional): Attention dropout rate. Default: 0.0
433
- drop_path (float | tuple[float], optional): Stochastic depth rate. Default: 0.0
434
- norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm
435
- downsample (nn.Module | None, optional): Downsample layer at the end of the layer. Default: None
436
- use_checkpoint (bool): Whether to use checkpointing to save memory. Default: False.
437
- img_size: Input image size.
438
- patch_size: Patch size.
439
- resi_connection: The convolutional block before residual connection.
440
- """
441
-
442
- def __init__(self, dim, input_resolution, depth, num_heads, window_size,
443
- mlp_ratio=4., qkv_bias=True, qk_scale=None, drop=0., attn_drop=0.,
444
- drop_path=0., norm_layer=nn.LayerNorm, downsample=None, use_checkpoint=False,
445
- img_size=224, patch_size=4, resi_connection='1conv'):
446
- super(RSTB, self).__init__()
447
-
448
- self.dim = dim
449
- self.input_resolution = input_resolution
450
-
451
- self.residual_group = BasicLayer(dim=dim,
452
- input_resolution=input_resolution,
453
- depth=depth,
454
- num_heads=num_heads,
455
- window_size=window_size,
456
- mlp_ratio=mlp_ratio,
457
- qkv_bias=qkv_bias, qk_scale=qk_scale,
458
- drop=drop, attn_drop=attn_drop,
459
- drop_path=drop_path,
460
- norm_layer=norm_layer,
461
- downsample=downsample,
462
- use_checkpoint=use_checkpoint)
463
-
464
- if resi_connection == '1conv':
465
- self.conv = nn.Conv2d(dim, dim, 3, 1, 1)
466
- elif resi_connection == '3conv':
467
- # to save parameters and memory
468
- self.conv = nn.Sequential(nn.Conv2d(dim, dim // 4, 3, 1, 1), nn.LeakyReLU(negative_slope=0.2, inplace=True),
469
- nn.Conv2d(dim // 4, dim // 4, 1, 1, 0),
470
- nn.LeakyReLU(negative_slope=0.2, inplace=True),
471
- nn.Conv2d(dim // 4, dim, 3, 1, 1))
472
-
473
- self.patch_embed = PatchEmbed(
474
- img_size=img_size, patch_size=patch_size, in_chans=0, embed_dim=dim,
475
- norm_layer=None)
476
-
477
- self.patch_unembed = PatchUnEmbed(
478
- img_size=img_size, patch_size=patch_size, in_chans=0, embed_dim=dim,
479
- norm_layer=None)
480
-
481
- def forward(self, x, x_size):
482
- return self.patch_embed(self.conv(self.patch_unembed(self.residual_group(x, x_size), x_size))) + x
483
-
484
- def flops(self):
485
- flops = 0
486
- flops += self.residual_group.flops()
487
- H, W = self.input_resolution
488
- flops += H * W * self.dim * self.dim * 9
489
- flops += self.patch_embed.flops()
490
- flops += self.patch_unembed.flops()
491
-
492
- return flops
493
-
494
-
495
- class PatchEmbed(nn.Module):
496
- r""" Image to Patch Embedding
497
-
498
- Args:
499
- img_size (int): Image size. Default: 224.
500
- patch_size (int): Patch token size. Default: 4.
501
- in_chans (int): Number of input image channels. Default: 3.
502
- embed_dim (int): Number of linear projection output channels. Default: 96.
503
- norm_layer (nn.Module, optional): Normalization layer. Default: None
504
- """
505
-
506
- def __init__(self, img_size=224, patch_size=4, in_chans=3, embed_dim=96, norm_layer=None):
507
- super().__init__()
508
- img_size = to_2tuple(img_size)
509
- patch_size = to_2tuple(patch_size)
510
- patches_resolution = [img_size[0] // patch_size[0], img_size[1] // patch_size[1]]
511
- self.img_size = img_size
512
- self.patch_size = patch_size
513
- self.patches_resolution = patches_resolution
514
- self.num_patches = patches_resolution[0] * patches_resolution[1]
515
-
516
- self.in_chans = in_chans
517
- self.embed_dim = embed_dim
518
-
519
- if norm_layer is not None:
520
- self.norm = norm_layer(embed_dim)
521
- else:
522
- self.norm = None
523
-
524
- def forward(self, x):
525
- x = x.flatten(2).transpose(1, 2) # B Ph*Pw C
526
- if self.norm is not None:
527
- x = self.norm(x)
528
- return x
529
-
530
- def flops(self):
531
- flops = 0
532
- H, W = self.img_size
533
- if self.norm is not None:
534
- flops += H * W * self.embed_dim
535
- return flops
536
-
537
-
538
- class PatchUnEmbed(nn.Module):
539
- r""" Image to Patch Unembedding
540
-
541
- Args:
542
- img_size (int): Image size. Default: 224.
543
- patch_size (int): Patch token size. Default: 4.
544
- in_chans (int): Number of input image channels. Default: 3.
545
- embed_dim (int): Number of linear projection output channels. Default: 96.
546
- norm_layer (nn.Module, optional): Normalization layer. Default: None
547
- """
548
-
549
- def __init__(self, img_size=224, patch_size=4, in_chans=3, embed_dim=96, norm_layer=None):
550
- super().__init__()
551
- img_size = to_2tuple(img_size)
552
- patch_size = to_2tuple(patch_size)
553
- patches_resolution = [img_size[0] // patch_size[0], img_size[1] // patch_size[1]]
554
- self.img_size = img_size
555
- self.patch_size = patch_size
556
- self.patches_resolution = patches_resolution
557
- self.num_patches = patches_resolution[0] * patches_resolution[1]
558
-
559
- self.in_chans = in_chans
560
- self.embed_dim = embed_dim
561
-
562
- def forward(self, x, x_size):
563
- B, HW, C = x.shape
564
- x = x.transpose(1, 2).view(B, self.embed_dim, x_size[0], x_size[1]) # B Ph*Pw C
565
- return x
566
-
567
- def flops(self):
568
- flops = 0
569
- return flops
570
-
571
-
572
- class Upsample(nn.Sequential):
573
- """Upsample module.
574
-
575
- Args:
576
- scale (int): Scale factor. Supported scales: 2^n and 3.
577
- num_feat (int): Channel number of intermediate features.
578
- """
579
-
580
- def __init__(self, scale, num_feat):
581
- m = []
582
- if (scale & (scale - 1)) == 0: # scale = 2^n
583
- for _ in range(int(math.log(scale, 2))):
584
- m.append(nn.Conv2d(num_feat, 4 * num_feat, 3, 1, 1))
585
- m.append(nn.PixelShuffle(2))
586
- elif scale == 3:
587
- m.append(nn.Conv2d(num_feat, 9 * num_feat, 3, 1, 1))
588
- m.append(nn.PixelShuffle(3))
589
- else:
590
- raise ValueError(f'scale {scale} is not supported. ' 'Supported scales: 2^n and 3.')
591
- super(Upsample, self).__init__(*m)
592
-
593
-
594
- class UpsampleOneStep(nn.Sequential):
595
- """UpsampleOneStep module (the difference with Upsample is that it always only has 1conv + 1pixelshuffle)
596
- Used in lightweight SR to save parameters.
597
-
598
- Args:
599
- scale (int): Scale factor. Supported scales: 2^n and 3.
600
- num_feat (int): Channel number of intermediate features.
601
-
602
- """
603
-
604
- def __init__(self, scale, num_feat, num_out_ch, input_resolution=None):
605
- self.num_feat = num_feat
606
- self.input_resolution = input_resolution
607
- m = []
608
- m.append(nn.Conv2d(num_feat, (scale ** 2) * num_out_ch, 3, 1, 1))
609
- m.append(nn.PixelShuffle(scale))
610
- super(UpsampleOneStep, self).__init__(*m)
611
-
612
- def flops(self):
613
- H, W = self.input_resolution
614
- flops = H * W * self.num_feat * 3 * 9
615
- return flops
616
-
617
-
618
- class SwinIR(nn.Module):
619
- r""" SwinIR
620
- A PyTorch impl of : `SwinIR: Image Restoration Using Swin Transformer`, based on Swin Transformer.
621
-
622
- Args:
623
- img_size (int | tuple(int)): Input image size. Default 64
624
- patch_size (int | tuple(int)): Patch size. Default: 1
625
- in_chans (int): Number of input image channels. Default: 3
626
- embed_dim (int): Patch embedding dimension. Default: 96
627
- depths (tuple(int)): Depth of each Swin Transformer layer.
628
- num_heads (tuple(int)): Number of attention heads in different layers.
629
- window_size (int): Window size. Default: 7
630
- mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. Default: 4
631
- qkv_bias (bool): If True, add a learnable bias to query, key, value. Default: True
632
- qk_scale (float): Override default qk scale of head_dim ** -0.5 if set. Default: None
633
- drop_rate (float): Dropout rate. Default: 0
634
- attn_drop_rate (float): Attention dropout rate. Default: 0
635
- drop_path_rate (float): Stochastic depth rate. Default: 0.1
636
- norm_layer (nn.Module): Normalization layer. Default: nn.LayerNorm.
637
- ape (bool): If True, add absolute position embedding to the patch embedding. Default: False
638
- patch_norm (bool): If True, add normalization after patch embedding. Default: True
639
- use_checkpoint (bool): Whether to use checkpointing to save memory. Default: False
640
- upscale: Upscale factor. 2/3/4/8 for image SR, 1 for denoising and compress artifact reduction
641
- img_range: Image range. 1. or 255.
642
- upsampler: The reconstruction reconstruction module. 'pixelshuffle'/'pixelshuffledirect'/'nearest+conv'/None
643
- resi_connection: The convolutional block before residual connection. '1conv'/'3conv'
644
- """
645
-
646
- def __init__(self, img_size=64, patch_size=1, in_chans=3,
647
- embed_dim=96, depths=[6, 6, 6, 6], num_heads=[6, 6, 6, 6],
648
- window_size=7, mlp_ratio=4., qkv_bias=True, qk_scale=None,
649
- drop_rate=0., attn_drop_rate=0., drop_path_rate=0.1,
650
- norm_layer=nn.LayerNorm, ape=False, patch_norm=True,
651
- use_checkpoint=False, upscale=2, img_range=1., upsampler='', resi_connection='1conv',
652
- **kwargs):
653
- super(SwinIR, self).__init__()
654
- num_in_ch = in_chans
655
- num_out_ch = in_chans
656
- num_feat = 64
657
- self.img_range = img_range
658
- if in_chans == 3:
659
- rgb_mean = (0.4488, 0.4371, 0.4040)
660
- self.mean = torch.Tensor(rgb_mean).view(1, 3, 1, 1)
661
- else:
662
- self.mean = torch.zeros(1, 1, 1, 1)
663
- self.upscale = upscale
664
- self.upsampler = upsampler
665
- self.window_size = window_size
666
-
667
- #####################################################################################################
668
- ################################### 1, shallow feature extraction ###################################
669
- self.conv_first = nn.Conv2d(num_in_ch, embed_dim, 3, 1, 1)
670
-
671
- #####################################################################################################
672
- ################################### 2, deep feature extraction ######################################
673
- self.num_layers = len(depths)
674
- self.embed_dim = embed_dim
675
- self.ape = ape
676
- self.patch_norm = patch_norm
677
- self.num_features = embed_dim
678
- self.mlp_ratio = mlp_ratio
679
-
680
- # split image into non-overlapping patches
681
- self.patch_embed = PatchEmbed(
682
- img_size=img_size, patch_size=patch_size, in_chans=embed_dim, embed_dim=embed_dim,
683
- norm_layer=norm_layer if self.patch_norm else None)
684
- num_patches = self.patch_embed.num_patches
685
- patches_resolution = self.patch_embed.patches_resolution
686
- self.patches_resolution = patches_resolution
687
-
688
- # merge non-overlapping patches into image
689
- self.patch_unembed = PatchUnEmbed(
690
- img_size=img_size, patch_size=patch_size, in_chans=embed_dim, embed_dim=embed_dim,
691
- norm_layer=norm_layer if self.patch_norm else None)
692
-
693
- # absolute position embedding
694
- if self.ape:
695
- self.absolute_pos_embed = nn.Parameter(torch.zeros(1, num_patches, embed_dim))
696
- trunc_normal_(self.absolute_pos_embed, std=.02)
697
-
698
- self.pos_drop = nn.Dropout(p=drop_rate)
699
-
700
- # stochastic depth
701
- dpr = [x.item() for x in torch.linspace(0, drop_path_rate, sum(depths))] # stochastic depth decay rule
702
-
703
- # build Residual Swin Transformer blocks (RSTB)
704
- self.layers = nn.ModuleList()
705
- for i_layer in range(self.num_layers):
706
- layer = RSTB(dim=embed_dim,
707
- input_resolution=(patches_resolution[0],
708
- patches_resolution[1]),
709
- depth=depths[i_layer],
710
- num_heads=num_heads[i_layer],
711
- window_size=window_size,
712
- mlp_ratio=self.mlp_ratio,
713
- qkv_bias=qkv_bias, qk_scale=qk_scale,
714
- drop=drop_rate, attn_drop=attn_drop_rate,
715
- drop_path=dpr[sum(depths[:i_layer]):sum(depths[:i_layer + 1])], # no impact on SR results
716
- norm_layer=norm_layer,
717
- downsample=None,
718
- use_checkpoint=use_checkpoint,
719
- img_size=img_size,
720
- patch_size=patch_size,
721
- resi_connection=resi_connection
722
-
723
- )
724
- self.layers.append(layer)
725
- self.norm = norm_layer(self.num_features)
726
-
727
- # build the last conv layer in deep feature extraction
728
- if resi_connection == '1conv':
729
- self.conv_after_body = nn.Conv2d(embed_dim, embed_dim, 3, 1, 1)
730
- elif resi_connection == '3conv':
731
- # to save parameters and memory
732
- self.conv_after_body = nn.Sequential(nn.Conv2d(embed_dim, embed_dim // 4, 3, 1, 1),
733
- nn.LeakyReLU(negative_slope=0.2, inplace=True),
734
- nn.Conv2d(embed_dim // 4, embed_dim // 4, 1, 1, 0),
735
- nn.LeakyReLU(negative_slope=0.2, inplace=True),
736
- nn.Conv2d(embed_dim // 4, embed_dim, 3, 1, 1))
737
-
738
- #####################################################################################################
739
- ################################ 3, high quality image reconstruction ################################
740
- if self.upsampler == 'pixelshuffle':
741
- # for classical SR
742
- self.conv_before_upsample = nn.Sequential(nn.Conv2d(embed_dim, num_feat, 3, 1, 1),
743
- nn.LeakyReLU(inplace=True))
744
- self.upsample = Upsample(upscale, num_feat)
745
- self.conv_last = nn.Conv2d(num_feat, num_out_ch, 3, 1, 1)
746
- elif self.upsampler == 'pixelshuffledirect':
747
- # for lightweight SR (to save parameters)
748
- self.upsample = UpsampleOneStep(upscale, embed_dim, num_out_ch,
749
- (patches_resolution[0], patches_resolution[1]))
750
- elif self.upsampler == 'nearest+conv':
751
- # for real-world SR (less artifacts)
752
- assert self.upscale == 4, 'only support x4 now.'
753
- self.conv_before_upsample = nn.Sequential(nn.Conv2d(embed_dim, num_feat, 3, 1, 1),
754
- nn.LeakyReLU(inplace=True))
755
- self.conv_up1 = nn.Conv2d(num_feat, num_feat, 3, 1, 1)
756
- self.conv_up2 = nn.Conv2d(num_feat, num_feat, 3, 1, 1)
757
- self.conv_hr = nn.Conv2d(num_feat, num_feat, 3, 1, 1)
758
- self.conv_last = nn.Conv2d(num_feat, num_out_ch, 3, 1, 1)
759
- self.lrelu = nn.LeakyReLU(negative_slope=0.2, inplace=True)
760
- else:
761
- # for image denoising and JPEG compression artifact reduction
762
- self.conv_last = nn.Conv2d(embed_dim, num_out_ch, 3, 1, 1)
763
-
764
- self.apply(self._init_weights)
765
-
766
- def _init_weights(self, m):
767
- if isinstance(m, nn.Linear):
768
- trunc_normal_(m.weight, std=.02)
769
- if isinstance(m, nn.Linear) and m.bias is not None:
770
- nn.init.constant_(m.bias, 0)
771
- elif isinstance(m, nn.LayerNorm):
772
- nn.init.constant_(m.bias, 0)
773
- nn.init.constant_(m.weight, 1.0)
774
-
775
- @torch.jit.ignore
776
- def no_weight_decay(self):
777
- return {'absolute_pos_embed'}
778
-
779
- @torch.jit.ignore
780
- def no_weight_decay_keywords(self):
781
- return {'relative_position_bias_table'}
782
-
783
- def check_image_size(self, x):
784
- _, _, h, w = x.size()
785
- mod_pad_h = (self.window_size - h % self.window_size) % self.window_size
786
- mod_pad_w = (self.window_size - w % self.window_size) % self.window_size
787
- x = F.pad(x, (0, mod_pad_w, 0, mod_pad_h), 'reflect')
788
- return x
789
-
790
- def forward_features(self, x):
791
- x_size = (x.shape[2], x.shape[3])
792
- x = self.patch_embed(x)
793
- if self.ape:
794
- x = x + self.absolute_pos_embed
795
- x = self.pos_drop(x)
796
-
797
- for layer in self.layers:
798
- x = layer(x, x_size)
799
-
800
- x = self.norm(x) # B L C
801
- x = self.patch_unembed(x, x_size)
802
-
803
- return x
804
-
805
- def forward(self, x):
806
- H, W = x.shape[2:]
807
- x = self.check_image_size(x)
808
-
809
- self.mean = self.mean.type_as(x)
810
- x = (x - self.mean) * self.img_range
811
-
812
- if self.upsampler == 'pixelshuffle':
813
- # for classical SR
814
- x = self.conv_first(x)
815
- x = self.conv_after_body(self.forward_features(x)) + x
816
- x = self.conv_before_upsample(x)
817
- x = self.conv_last(self.upsample(x))
818
- elif self.upsampler == 'pixelshuffledirect':
819
- # for lightweight SR
820
- x = self.conv_first(x)
821
- x = self.conv_after_body(self.forward_features(x)) + x
822
- x = self.upsample(x)
823
- elif self.upsampler == 'nearest+conv':
824
- # for real-world SR
825
- x = self.conv_first(x)
826
- x = self.conv_after_body(self.forward_features(x)) + x
827
- x = self.conv_before_upsample(x)
828
- x = self.lrelu(self.conv_up1(torch.nn.functional.interpolate(x, scale_factor=2, mode='nearest')))
829
- x = self.lrelu(self.conv_up2(torch.nn.functional.interpolate(x, scale_factor=2, mode='nearest')))
830
- x = self.conv_last(self.lrelu(self.conv_hr(x)))
831
- else:
832
- # for image denoising and JPEG compression artifact reduction
833
- x_first = self.conv_first(x)
834
- res = self.conv_after_body(self.forward_features(x_first)) + x_first
835
- x = x + self.conv_last(res)
836
-
837
- x = x / self.img_range + self.mean
838
-
839
- return x[:, :, :H*self.upscale, :W*self.upscale]
840
-
841
- def flops(self):
842
- flops = 0
843
- H, W = self.patches_resolution
844
- flops += H * W * 3 * self.embed_dim * 9
845
- flops += self.patch_embed.flops()
846
- for i, layer in enumerate(self.layers):
847
- flops += layer.flops()
848
- flops += H * W * 3 * self.embed_dim * self.embed_dim
849
- flops += self.upsample.flops()
850
- return flops
851
-
852
-
853
- if __name__ == '__main__':
854
- upscale = 4
855
- window_size = 8
856
- height = (1024 // upscale // window_size + 1) * window_size
857
- width = (720 // upscale // window_size + 1) * window_size
858
- model = SwinIR(upscale=2, img_size=(height, width),
859
- window_size=window_size, img_range=1., depths=[6, 6, 6, 6],
860
- embed_dim=60, num_heads=[6, 6, 6, 6], mlp_ratio=2, upsampler='pixelshuffledirect')
861
- print(model)
862
- print(height, width, model.flops() / 1e9)
863
-
864
- x = torch.randn((1, 3, height, width))
865
- x = model(x)
866
- print(x.shape)