import gradio as gr from diffusers import StableDiffusionPipeline import torch from transformers import logging logging.set_verbosity_error() # This suppresses warnings, including cache migration #GPU error from diffusers import StableDiffusionPipeline # Load the model model_id = "ImageInception/stable-diffusion-finetuned" pipe = StableDiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.float16) # Check if CUDA is available and move the model to GPU if it is, otherwise use CPU device = "cuda" if torch.cuda.is_available() else "cpu" pipe.to(device) print(f"Using device: {device}") # Define the function for text-to-image generation def generate_image(prompt): image = pipe(prompt).images[0] return image # Create a Gradio interface interface = gr.Interface( fn=generate_image, inputs=gr.Textbox(label="Enter your prompt"), outputs=gr.Image(label="Generated Image"), ) # Launch the interface interface.launch()