from fastapi import FastAPI import fal_client import gradio as gr import threading import os from pathlib import Path from public_instagram_loader import public_instagram_loader, InstagramData app = FastAPI() # Set up the FAL API Key FAL_KEY = os.getenv("FAL_KEY") #fal_client.set_api_key(FAL_KEY) # FastAPI route @app.get("/") def greet_json(): return {"AI-InstagramPhotos": "Generate photos from your favorite Instagram account using FAL API."} # Function to submit Instagram data to FAL API def submit_to_fal(instagram_data: InstagramData): handler = fal_client.submit( "fal-ai/flux-lora-fast-training", arguments={ "images_data_url": instagram_data.image_urls, "trigger_word": instagram_data.profile_info['username'], "is_style": True }, ) result = handler.get() return result # Gradio interface for interacting with the Instagram loader and FAL def gradio_interface(): def generate_lora_from_instagram(username: str): # Load Instagram data instagram_data = public_instagram_loader(username) if instagram_data is None: return "Profile not found or an error occurred." # Pass Instagram data to FAL API for LoRA training fal_result = submit_to_fal(instagram_data) # Return the URL of the trained LoRA weights return f"Trained LoRA weights: {fal_result['diffusers_lora_file']['url']}" iface = gr.Interface( fn=generate_lora_from_instagram, inputs=gr.Textbox(label="Enter Instagram username"), outputs=gr.Textbox(label="LoRA URL"), title="Instagram LoRA Generator using FAL" ) # Launch Gradio on a different port (7861) iface.launch(server_name="0.0.0.0", server_port=7861) # Run Gradio in a separate thread thread = threading.Thread(target=gradio_interface) thread.start()