import tensorflow as tf import gradio as gr import numpy as np from PIL import Image # Load the model model = tf.saved_model.load('./saved_model') # Define the prediction function def predict(image): # Preprocess the image to the required input format img = np.array(image).astype(np.float32) img = np.expand_dims(img, axis=0) # Add batch dimension img = tf.image.resize(img, (640, 640)) # Resize if needed # Perform inference predictions = model(img) return predictions.numpy() # Adjust output processing as needed # Set up the Gradio interface interface = gr.Interface(fn=predict, inputs=gr.inputs.Image(type="pil"), outputs="label") interface.launch()