File size: 4,825 Bytes
e04e4d5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
from typing import Any, Dict, Tuple, List
from cv2.typing import Size
from functools import lru_cache
import cv2
import numpy

from facefusion.typing import Bbox, Kps, Frame, Mask, Matrix, Template

TEMPLATES : Dict[Template, numpy.ndarray[Any, Any]] =\
{
	'arcface_112_v1': numpy.array(
	[
		[ 0.35473214, 0.45658929 ],
		[ 0.64526786, 0.45658929 ],
		[ 0.50000000, 0.61154464 ],
		[ 0.37913393, 0.77687500 ],
		[ 0.62086607, 0.77687500 ]
	]),
	'arcface_112_v2': numpy.array(
	[
		[ 0.34191607, 0.46157411 ],
		[ 0.65653393, 0.45983393 ],
		[ 0.50022500, 0.64050536 ],
		[ 0.37097589, 0.82469196 ],
		[ 0.63151696, 0.82325089 ]
	]),
	'arcface_128_v2': numpy.array(
	[
		[ 0.36167656, 0.40387734 ],
		[ 0.63696719, 0.40235469 ],
		[ 0.50019687, 0.56044219 ],
		[ 0.38710391, 0.72160547 ],
		[ 0.61507734, 0.72034453 ]
	]),
	'ffhq_512': numpy.array(
	[
		[ 0.37691676, 0.46864664 ],
		[ 0.62285697, 0.46912813 ],
		[ 0.50123859, 0.61331904 ],
		[ 0.39308822, 0.72541100 ],
		[ 0.61150205, 0.72490465 ]
	])
}


def warp_face_by_kps(temp_frame : Frame, kps : Kps, template : Template, crop_size : Size) -> Tuple[Frame, Matrix]:
	normed_template = TEMPLATES.get(template) * crop_size
	affine_matrix = cv2.estimateAffinePartial2D(kps, normed_template, method = cv2.RANSAC, ransacReprojThreshold = 100)[0]
	crop_frame = cv2.warpAffine(temp_frame, affine_matrix, crop_size, borderMode = cv2.BORDER_REPLICATE, flags = cv2.INTER_AREA)
	return crop_frame, affine_matrix


def warp_face_by_bbox(temp_frame : Frame, bbox : Bbox, crop_size : Size) -> Tuple[Frame, Matrix]:
	source_kps = numpy.array([[ bbox[0], bbox[1] ], [bbox[2], bbox[1] ], [bbox[0], bbox[3] ]], dtype = numpy.float32)
	target_kps = numpy.array([[ 0, 0 ], [ crop_size[0], 0 ], [ 0, crop_size[1] ]], dtype = numpy.float32)
	affine_matrix = cv2.getAffineTransform(source_kps, target_kps)
	if bbox[2] - bbox[0] > crop_size[0] or bbox[3] - bbox[1] > crop_size[1]:
		interpolation_method = cv2.INTER_AREA
	else:
		interpolation_method = cv2.INTER_LINEAR
	crop_frame = cv2.warpAffine(temp_frame, affine_matrix, crop_size, flags = interpolation_method)
	return crop_frame, affine_matrix


def paste_back(temp_frame : Frame, crop_frame : Frame, crop_mask : Mask, affine_matrix : Matrix) -> Frame:
	inverse_matrix = cv2.invertAffineTransform(affine_matrix)
	temp_frame_size = temp_frame.shape[:2][::-1]
	inverse_crop_mask = cv2.warpAffine(crop_mask, inverse_matrix, temp_frame_size).clip(0, 1)
	inverse_crop_frame = cv2.warpAffine(crop_frame, inverse_matrix, temp_frame_size, borderMode = cv2.BORDER_REPLICATE)
	paste_frame = temp_frame.copy()
	paste_frame[:, :, 0] = inverse_crop_mask * inverse_crop_frame[:, :, 0] + (1 - inverse_crop_mask) * temp_frame[:, :, 0]
	paste_frame[:, :, 1] = inverse_crop_mask * inverse_crop_frame[:, :, 1] + (1 - inverse_crop_mask) * temp_frame[:, :, 1]
	paste_frame[:, :, 2] = inverse_crop_mask * inverse_crop_frame[:, :, 2] + (1 - inverse_crop_mask) * temp_frame[:, :, 2]
	return paste_frame


@lru_cache(maxsize = None)
def create_static_anchors(feature_stride : int, anchor_total : int, stride_height : int, stride_width : int) -> numpy.ndarray[Any, Any]:
	y, x = numpy.mgrid[:stride_height, :stride_width][::-1]
	anchors = numpy.stack((y, x), axis = -1)
	anchors = (anchors * feature_stride).reshape((-1, 2))
	anchors = numpy.stack([ anchors ] * anchor_total, axis = 1).reshape((-1, 2))
	return anchors


def distance_to_bbox(points : numpy.ndarray[Any, Any], distance : numpy.ndarray[Any, Any]) -> Bbox:
	x1 = points[:, 0] - distance[:, 0]
	y1 = points[:, 1] - distance[:, 1]
	x2 = points[:, 0] + distance[:, 2]
	y2 = points[:, 1] + distance[:, 3]
	bbox = numpy.column_stack([ x1, y1, x2, y2 ])
	return bbox


def distance_to_kps(points : numpy.ndarray[Any, Any], distance : numpy.ndarray[Any, Any]) -> Kps:
	x = points[:, 0::2] + distance[:, 0::2]
	y = points[:, 1::2] + distance[:, 1::2]
	kps = numpy.stack((x, y), axis = -1)
	return kps


def apply_nms(bbox_list : List[Bbox], iou_threshold : float) -> List[int]:
	keep_indices = []
	dimension_list = numpy.reshape(bbox_list, (-1, 4))
	x1 = dimension_list[:, 0]
	y1 = dimension_list[:, 1]
	x2 = dimension_list[:, 2]
	y2 = dimension_list[:, 3]
	areas = (x2 - x1 + 1) * (y2 - y1 + 1)
	indices = numpy.arange(len(bbox_list))
	while indices.size > 0:
		index = indices[0]
		remain_indices = indices[1:]
		keep_indices.append(index)
		xx1 = numpy.maximum(x1[index], x1[remain_indices])
		yy1 = numpy.maximum(y1[index], y1[remain_indices])
		xx2 = numpy.minimum(x2[index], x2[remain_indices])
		yy2 = numpy.minimum(y2[index], y2[remain_indices])
		width = numpy.maximum(0, xx2 - xx1 + 1)
		height = numpy.maximum(0, yy2 - yy1 + 1)
		iou = width * height / (areas[index] + areas[remain_indices] - width * height)
		indices = indices[numpy.where(iou <= iou_threshold)[0] + 1]
	return keep_indices