Spaces:
Paused
Paused
File size: 4,825 Bytes
e04e4d5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 |
from typing import Any, Dict, Tuple, List
from cv2.typing import Size
from functools import lru_cache
import cv2
import numpy
from facefusion.typing import Bbox, Kps, Frame, Mask, Matrix, Template
TEMPLATES : Dict[Template, numpy.ndarray[Any, Any]] =\
{
'arcface_112_v1': numpy.array(
[
[ 0.35473214, 0.45658929 ],
[ 0.64526786, 0.45658929 ],
[ 0.50000000, 0.61154464 ],
[ 0.37913393, 0.77687500 ],
[ 0.62086607, 0.77687500 ]
]),
'arcface_112_v2': numpy.array(
[
[ 0.34191607, 0.46157411 ],
[ 0.65653393, 0.45983393 ],
[ 0.50022500, 0.64050536 ],
[ 0.37097589, 0.82469196 ],
[ 0.63151696, 0.82325089 ]
]),
'arcface_128_v2': numpy.array(
[
[ 0.36167656, 0.40387734 ],
[ 0.63696719, 0.40235469 ],
[ 0.50019687, 0.56044219 ],
[ 0.38710391, 0.72160547 ],
[ 0.61507734, 0.72034453 ]
]),
'ffhq_512': numpy.array(
[
[ 0.37691676, 0.46864664 ],
[ 0.62285697, 0.46912813 ],
[ 0.50123859, 0.61331904 ],
[ 0.39308822, 0.72541100 ],
[ 0.61150205, 0.72490465 ]
])
}
def warp_face_by_kps(temp_frame : Frame, kps : Kps, template : Template, crop_size : Size) -> Tuple[Frame, Matrix]:
normed_template = TEMPLATES.get(template) * crop_size
affine_matrix = cv2.estimateAffinePartial2D(kps, normed_template, method = cv2.RANSAC, ransacReprojThreshold = 100)[0]
crop_frame = cv2.warpAffine(temp_frame, affine_matrix, crop_size, borderMode = cv2.BORDER_REPLICATE, flags = cv2.INTER_AREA)
return crop_frame, affine_matrix
def warp_face_by_bbox(temp_frame : Frame, bbox : Bbox, crop_size : Size) -> Tuple[Frame, Matrix]:
source_kps = numpy.array([[ bbox[0], bbox[1] ], [bbox[2], bbox[1] ], [bbox[0], bbox[3] ]], dtype = numpy.float32)
target_kps = numpy.array([[ 0, 0 ], [ crop_size[0], 0 ], [ 0, crop_size[1] ]], dtype = numpy.float32)
affine_matrix = cv2.getAffineTransform(source_kps, target_kps)
if bbox[2] - bbox[0] > crop_size[0] or bbox[3] - bbox[1] > crop_size[1]:
interpolation_method = cv2.INTER_AREA
else:
interpolation_method = cv2.INTER_LINEAR
crop_frame = cv2.warpAffine(temp_frame, affine_matrix, crop_size, flags = interpolation_method)
return crop_frame, affine_matrix
def paste_back(temp_frame : Frame, crop_frame : Frame, crop_mask : Mask, affine_matrix : Matrix) -> Frame:
inverse_matrix = cv2.invertAffineTransform(affine_matrix)
temp_frame_size = temp_frame.shape[:2][::-1]
inverse_crop_mask = cv2.warpAffine(crop_mask, inverse_matrix, temp_frame_size).clip(0, 1)
inverse_crop_frame = cv2.warpAffine(crop_frame, inverse_matrix, temp_frame_size, borderMode = cv2.BORDER_REPLICATE)
paste_frame = temp_frame.copy()
paste_frame[:, :, 0] = inverse_crop_mask * inverse_crop_frame[:, :, 0] + (1 - inverse_crop_mask) * temp_frame[:, :, 0]
paste_frame[:, :, 1] = inverse_crop_mask * inverse_crop_frame[:, :, 1] + (1 - inverse_crop_mask) * temp_frame[:, :, 1]
paste_frame[:, :, 2] = inverse_crop_mask * inverse_crop_frame[:, :, 2] + (1 - inverse_crop_mask) * temp_frame[:, :, 2]
return paste_frame
@lru_cache(maxsize = None)
def create_static_anchors(feature_stride : int, anchor_total : int, stride_height : int, stride_width : int) -> numpy.ndarray[Any, Any]:
y, x = numpy.mgrid[:stride_height, :stride_width][::-1]
anchors = numpy.stack((y, x), axis = -1)
anchors = (anchors * feature_stride).reshape((-1, 2))
anchors = numpy.stack([ anchors ] * anchor_total, axis = 1).reshape((-1, 2))
return anchors
def distance_to_bbox(points : numpy.ndarray[Any, Any], distance : numpy.ndarray[Any, Any]) -> Bbox:
x1 = points[:, 0] - distance[:, 0]
y1 = points[:, 1] - distance[:, 1]
x2 = points[:, 0] + distance[:, 2]
y2 = points[:, 1] + distance[:, 3]
bbox = numpy.column_stack([ x1, y1, x2, y2 ])
return bbox
def distance_to_kps(points : numpy.ndarray[Any, Any], distance : numpy.ndarray[Any, Any]) -> Kps:
x = points[:, 0::2] + distance[:, 0::2]
y = points[:, 1::2] + distance[:, 1::2]
kps = numpy.stack((x, y), axis = -1)
return kps
def apply_nms(bbox_list : List[Bbox], iou_threshold : float) -> List[int]:
keep_indices = []
dimension_list = numpy.reshape(bbox_list, (-1, 4))
x1 = dimension_list[:, 0]
y1 = dimension_list[:, 1]
x2 = dimension_list[:, 2]
y2 = dimension_list[:, 3]
areas = (x2 - x1 + 1) * (y2 - y1 + 1)
indices = numpy.arange(len(bbox_list))
while indices.size > 0:
index = indices[0]
remain_indices = indices[1:]
keep_indices.append(index)
xx1 = numpy.maximum(x1[index], x1[remain_indices])
yy1 = numpy.maximum(y1[index], y1[remain_indices])
xx2 = numpy.minimum(x2[index], x2[remain_indices])
yy2 = numpy.minimum(y2[index], y2[remain_indices])
width = numpy.maximum(0, xx2 - xx1 + 1)
height = numpy.maximum(0, yy2 - yy1 + 1)
iou = width * height / (areas[index] + areas[remain_indices] - width * height)
indices = indices[numpy.where(iou <= iou_threshold)[0] + 1]
return keep_indices
|