from typing import Any, Dict, Tuple, List from cv2.typing import Size from functools import lru_cache import cv2 import numpy from facefusion.typing import Bbox, Kps, Frame, Mask, Matrix, Template TEMPLATES : Dict[Template, numpy.ndarray[Any, Any]] =\ { 'arcface_112_v1': numpy.array( [ [ 0.35473214, 0.45658929 ], [ 0.64526786, 0.45658929 ], [ 0.50000000, 0.61154464 ], [ 0.37913393, 0.77687500 ], [ 0.62086607, 0.77687500 ] ]), 'arcface_112_v2': numpy.array( [ [ 0.34191607, 0.46157411 ], [ 0.65653393, 0.45983393 ], [ 0.50022500, 0.64050536 ], [ 0.37097589, 0.82469196 ], [ 0.63151696, 0.82325089 ] ]), 'arcface_128_v2': numpy.array( [ [ 0.36167656, 0.40387734 ], [ 0.63696719, 0.40235469 ], [ 0.50019687, 0.56044219 ], [ 0.38710391, 0.72160547 ], [ 0.61507734, 0.72034453 ] ]), 'ffhq_512': numpy.array( [ [ 0.37691676, 0.46864664 ], [ 0.62285697, 0.46912813 ], [ 0.50123859, 0.61331904 ], [ 0.39308822, 0.72541100 ], [ 0.61150205, 0.72490465 ] ]) } def warp_face_by_kps(temp_frame : Frame, kps : Kps, template : Template, crop_size : Size) -> Tuple[Frame, Matrix]: normed_template = TEMPLATES.get(template) * crop_size affine_matrix = cv2.estimateAffinePartial2D(kps, normed_template, method = cv2.RANSAC, ransacReprojThreshold = 100)[0] crop_frame = cv2.warpAffine(temp_frame, affine_matrix, crop_size, borderMode = cv2.BORDER_REPLICATE, flags = cv2.INTER_AREA) return crop_frame, affine_matrix def warp_face_by_bbox(temp_frame : Frame, bbox : Bbox, crop_size : Size) -> Tuple[Frame, Matrix]: source_kps = numpy.array([[ bbox[0], bbox[1] ], [bbox[2], bbox[1] ], [bbox[0], bbox[3] ]], dtype = numpy.float32) target_kps = numpy.array([[ 0, 0 ], [ crop_size[0], 0 ], [ 0, crop_size[1] ]], dtype = numpy.float32) affine_matrix = cv2.getAffineTransform(source_kps, target_kps) if bbox[2] - bbox[0] > crop_size[0] or bbox[3] - bbox[1] > crop_size[1]: interpolation_method = cv2.INTER_AREA else: interpolation_method = cv2.INTER_LINEAR crop_frame = cv2.warpAffine(temp_frame, affine_matrix, crop_size, flags = interpolation_method) return crop_frame, affine_matrix def paste_back(temp_frame : Frame, crop_frame : Frame, crop_mask : Mask, affine_matrix : Matrix) -> Frame: inverse_matrix = cv2.invertAffineTransform(affine_matrix) temp_frame_size = temp_frame.shape[:2][::-1] inverse_crop_mask = cv2.warpAffine(crop_mask, inverse_matrix, temp_frame_size).clip(0, 1) inverse_crop_frame = cv2.warpAffine(crop_frame, inverse_matrix, temp_frame_size, borderMode = cv2.BORDER_REPLICATE) paste_frame = temp_frame.copy() paste_frame[:, :, 0] = inverse_crop_mask * inverse_crop_frame[:, :, 0] + (1 - inverse_crop_mask) * temp_frame[:, :, 0] paste_frame[:, :, 1] = inverse_crop_mask * inverse_crop_frame[:, :, 1] + (1 - inverse_crop_mask) * temp_frame[:, :, 1] paste_frame[:, :, 2] = inverse_crop_mask * inverse_crop_frame[:, :, 2] + (1 - inverse_crop_mask) * temp_frame[:, :, 2] return paste_frame @lru_cache(maxsize = None) def create_static_anchors(feature_stride : int, anchor_total : int, stride_height : int, stride_width : int) -> numpy.ndarray[Any, Any]: y, x = numpy.mgrid[:stride_height, :stride_width][::-1] anchors = numpy.stack((y, x), axis = -1) anchors = (anchors * feature_stride).reshape((-1, 2)) anchors = numpy.stack([ anchors ] * anchor_total, axis = 1).reshape((-1, 2)) return anchors def distance_to_bbox(points : numpy.ndarray[Any, Any], distance : numpy.ndarray[Any, Any]) -> Bbox: x1 = points[:, 0] - distance[:, 0] y1 = points[:, 1] - distance[:, 1] x2 = points[:, 0] + distance[:, 2] y2 = points[:, 1] + distance[:, 3] bbox = numpy.column_stack([ x1, y1, x2, y2 ]) return bbox def distance_to_kps(points : numpy.ndarray[Any, Any], distance : numpy.ndarray[Any, Any]) -> Kps: x = points[:, 0::2] + distance[:, 0::2] y = points[:, 1::2] + distance[:, 1::2] kps = numpy.stack((x, y), axis = -1) return kps def apply_nms(bbox_list : List[Bbox], iou_threshold : float) -> List[int]: keep_indices = [] dimension_list = numpy.reshape(bbox_list, (-1, 4)) x1 = dimension_list[:, 0] y1 = dimension_list[:, 1] x2 = dimension_list[:, 2] y2 = dimension_list[:, 3] areas = (x2 - x1 + 1) * (y2 - y1 + 1) indices = numpy.arange(len(bbox_list)) while indices.size > 0: index = indices[0] remain_indices = indices[1:] keep_indices.append(index) xx1 = numpy.maximum(x1[index], x1[remain_indices]) yy1 = numpy.maximum(y1[index], y1[remain_indices]) xx2 = numpy.minimum(x2[index], x2[remain_indices]) yy2 = numpy.minimum(y2[index], y2[remain_indices]) width = numpy.maximum(0, xx2 - xx1 + 1) height = numpy.maximum(0, yy2 - yy1 + 1) iou = width * height / (areas[index] + areas[remain_indices] - width * height) indices = indices[numpy.where(iou <= iou_threshold)[0] + 1] return keep_indices