|
import json |
|
import pandas as pd |
|
import os |
|
from pypdf import PdfReader |
|
import re |
|
from tqdm import tqdm |
|
|
|
|
|
def extract_invoice_tables(invoices_path: str) -> list[str]: |
|
invoices_paths = [os.path.join(invoices_path, invoice) for invoice in os.listdir(invoices_path) if |
|
invoice.endswith(".pdf")] |
|
invoices_tables = [] |
|
for invoice_path in tqdm(invoices_paths): |
|
reader = PdfReader(invoice_path) |
|
page = reader.pages[0] |
|
text = page.extract_text() |
|
|
|
table_text = re.search(r"Beschädigtes Teil.*?Gesamtsumme:.*?EUR", text, re.DOTALL).group() |
|
|
|
lines = table_text.splitlines() |
|
header = lines[0] |
|
other_text = "\n".join(lines[1:]) |
|
cleaned_text = re.sub(r"(?<!\d)\n", " ", other_text) |
|
|
|
table = header + "\n" + cleaned_text |
|
|
|
inv = table.split("\n") |
|
reformatted_inv = "Beschädigtes Teil | Teilkosten (EUR) | Arbeitsstunden | Arbeitskosten (EUR/Stunde) | Gesamtkosten (EUR)\n" + "\n".join( |
|
" ".join(inv[i].split(" ")[:-4]) + " | " + ' | '.join(inv[i].split(" ")[-4:]) for i in |
|
range(1, len(inv) - 1)) + "\n" + inv[-1] |
|
|
|
invoices_tables.append(reformatted_inv) |
|
|
|
return invoices_tables |
|
|
|
|
|
def get_car_parts(invoices: list[str]) -> list[tuple[str, str, str]]: |
|
car_parts = [] |
|
for invoice in invoices: |
|
car_parts += [ |
|
( |
|
line.split(" | ")[0].replace("(rechts)", "").replace("(links)", "").strip(), |
|
line.split(" | ")[1], |
|
line.split(" | ")[2] |
|
) |
|
for line in invoice.split("\n")[1:-1] |
|
] |
|
return car_parts |
|
|
|
|
|
def estimate_costs(invoices_folder_path: str, path_to_save_json: str) -> pd.DataFrame: |
|
invoices = extract_invoice_tables(invoices_folder_path) |
|
car_parts = get_car_parts(invoices) |
|
|
|
car_parts_df = pd.DataFrame(car_parts, columns=["car_part", "cost", "hours"]) |
|
car_parts_df["cost"] = car_parts_df["cost"].astype(float) |
|
car_parts_df["hours"] = car_parts_df["hours"].astype(float) |
|
car_parts_df = car_parts_df.groupby("car_part").agg( |
|
{"cost": ["mean", "min", "max", "count"], "hours": ["mean", "min", "max"]} |
|
) |
|
car_parts_df.columns = [ |
|
"average_cost", "cost_min", "cost_max", "count", "average_hours", "hours_min", "hours_max" |
|
] |
|
|
|
car_parts_dict = car_parts_df.to_dict( |
|
orient="index" |
|
) |
|
|
|
with open(path_to_save_json, "w", encoding="utf-8") as f: |
|
json.dump(car_parts_dict, f, ensure_ascii=False, indent=4) |
|
|
|
return car_parts_df |
|
|