pixtral-demo / src /RAG.py
alexandraroze's picture
dockerfile
f11a85d
raw
history blame
6.46 kB
import clip
import faiss
from PIL import Image
from pypdf import PdfReader
import pandas as pd
import re
import os
import fitz
import torch
import numpy as np
from tqdm import tqdm
import base64
class RAG:
def __init__(
self,
fais_index_path,
clip_model="ViT-B/32",
reranker=None,
device="cpu",
image_invoice_index_path=None,
path_to_invoices=None,
path_to_images=None
):
self.index = faiss.read_index(fais_index_path)
self.model, self.preprocess = clip.load(clip_model, device=device)
self.device = device
if image_invoice_index_path:
self.image_invoice_index = pd.read_csv(image_invoice_index_path)
self.path_to_invoices = path_to_invoices
self.path_to_images = path_to_images
self.reranker = reranker
@staticmethod
def image_to_base64(image_path):
with open(image_path, "rb") as image_file:
return base64.b64encode(image_file.read())
def search_text(self, text, k=1):
text_features = self.model.encode_text(clip.tokenize([text]).to(self.device))
text_features /= text_features.norm(dim=-1, keepdim=True)
text_features = text_features.detach().numpy()
distances, indices = self.index.search(text_features, k)
return distances, indices
def search_image(self, image=None, image_path=None, k=1):
if image is None and image_path is None:
raise ValueError("Either image or image_path must be provided.")
if image is None:
image = Image.open(image_path)
image_input = self.preprocess(image).unsqueeze(0).to(self.device)
image_features = self.model.encode_image(image_input)
image_features /= image_features.norm(dim=-1, keepdim=True)
image_features = image_features.detach().numpy()
distances, indices = self.index.search(image_features, k)
return distances, indices
def find_invoice(self, image=None, image_path=None, return_only_path=True, k=1, damage_description=None):
if self.image_invoice_index is None:
raise ValueError("No index for invoices found.")
_, indices = self.search_image(image=image, image_path=image_path, k=k)
img_ids = self.image_invoice_index.iloc[indices[0]]['img_id'].values
invoices = self.image_invoice_index[self.image_invoice_index['img_id'].isin(img_ids)]['invoice'].values.tolist()
images_paths = self.image_invoice_index[self.image_invoice_index['img_id'].isin(img_ids)]['image'].values.tolist()
if self.reranker:
if damage_description is None:
raise ValueError("Damage description must be provided.")
# images = [self.image_to_base64(f"{self.path_to_images}/{img_path}") for img_path in images_paths]
images = [f"{self.path_to_images}/{img_path}" for img_path in images_paths]
results = self.reranker.rank(damage_description, images, doc_ids=invoices)
invoices = [doc.doc_id for doc in results]
print(invoices)
if return_only_path:
return invoices, images_paths
if not self.path_to_invoices:
raise ValueError("Path to data must be provided.")
invoices_tables = []
for invoice in invoices:
pdf_path = f"{self.path_to_invoices}/{invoice}"
reader = PdfReader(pdf_path)
page = reader.pages[0]
text = page.extract_text()
table_text = re.search(r"Beschädigtes Teil.*?Gesamtsumme:.*?EUR", text, re.DOTALL).group()
lines = table_text.splitlines()
header = lines[0]
other_text = "\n".join(lines[1:])
cleaned_text = re.sub(r"(?<!\d)\n", " ", other_text)
table = header + "\n" + cleaned_text
inv = table.split("\n")
reformatted_inv = "Beschädigtes Teil | Teilkosten (EUR) | Arbeitsstunden | Arbeitskosten (EUR/Stunde) | Gesamtkosten (EUR)\n" + "\n".join(
" ".join(inv[i].split(" ")[:-4]) + " | " + ' | '.join(inv[i].split(" ")[-4:]) for i in
range(1, len(inv) - 1)) + "\n" + inv[-1]
invoices_tables.append(reformatted_inv)
return invoices_tables, invoices
def build_rag(directory):
invoices = os.listdir(f"{directory}/invoices_validated")
invoices = [i for i in invoices if i.endswith(".pdf")]
image_invoice = []
os.makedirs(f"{directory}/images", exist_ok=True)
os.makedirs(f"{directory}/invoices", exist_ok=True)
for invoice in invoices:
doc = fitz.open(f"{directory}/invoices_validated/{invoice}")
page = doc[1]
image_list = page.get_images(full=True)
text = page.get_text()
xref = image_list[0][0]
base_image = doc.extract_image(xref)
image_bytes = base_image["image"]
image_name = invoice.replace(".pdf", ".png")
with open(f"{directory}/images/{image_name}", "wb") as img_file:
img_file.write(image_bytes)
doc.delete_pages(range(1, doc.page_count))
doc.save(f"{directory}/invoices/{invoice}")
doc.close()
image_invoice.append({
"invoice": invoice,
"image": image_name,
"description": text
})
image_invoice = pd.DataFrame(image_invoice)
device = "cuda" if torch.cuda.is_available() else "cpu"
model, preprocess = clip.load("ViT-B/32", device=device)
images = image_invoice["image"].tolist()
embeddings = []
image_indices = []
img_ids = []
for idx, img_path in enumerate(tqdm(images)):
image = Image.open(f"{directory}/images/{img_path}")
img_ids.append(idx)
inputs = preprocess(image).unsqueeze(0).to(device)
with torch.no_grad():
image_embedding = model.encode_image(inputs)
image_embedding = image_embedding / image_embedding.norm(dim=-1, keepdim=True)
embeddings.append(image_embedding.cpu().numpy().astype("float32"))
image_indices.append(img_path)
image_invoice["img_id"] = img_ids
image_invoice.to_csv(f"{directory}/image_invoice.csv", index=False)
embeddings_np = np.vstack(embeddings)
dimension = embeddings_np.shape[1]
index = faiss.IndexFlatIP(dimension)
index.add(embeddings_np)
faiss.write_index(index, f"{directory}/invoice_index.faiss")