import clip import faiss from PIL import Image from pypdf import PdfReader import pandas as pd import re import os import fitz import torch import numpy as np from tqdm import tqdm import base64 import json class RAG: def __init__( self, fais_index_path, clip_model="ViT-B/32", reranker=None, device="cpu", image_invoice_index_path=None, path_to_invoices=None, path_to_images=None, path_to_invoice_json=None ): self.index = faiss.read_index(fais_index_path) self.model, self.preprocess = clip.load(clip_model, device=device) self.device = device if image_invoice_index_path: self.image_invoice_index = pd.read_csv(image_invoice_index_path) self.path_to_invoices = path_to_invoices self.path_to_images = path_to_images self.reranker = reranker self.invoice_json = None self.invoice_json_granular = None if path_to_invoice_json: if type(path_to_invoice_json) == str: with open(path_to_invoice_json, "r") as f: self.invoice_json = json.load(f) elif type(path_to_invoice_json) == dict and set(list(path_to_invoice_json.keys())) == {"invoices", "invoices_granular"}: with open(path_to_invoice_json["invoices"], "r") as f: self.invoice_json = json.load(f) with open(path_to_invoice_json["invoices_granular"], "r") as f: self.invoice_json_granular = json.load(f) else: raise ValueError("Invalid format for invoice json.") @staticmethod def image_to_base64(image_path): with open(image_path, "rb") as image_file: return base64.b64encode(image_file.read()) def search_text(self, text, k=1): text_features = self.model.encode_text(clip.tokenize([text]).to(self.device)) text_features /= text_features.norm(dim=-1, keepdim=True) text_features = text_features.detach().numpy() distances, indices = self.index.search(text_features, k) return distances, indices def search_image(self, image=None, image_path=None, k=1): if image is None and image_path is None: raise ValueError("Either image or image_path must be provided.") if image is None: image = Image.open(image_path) image_input = self.preprocess(image).unsqueeze(0).to(self.device) image_features = self.model.encode_image(image_input) image_features /= image_features.norm(dim=-1, keepdim=True) image_features = image_features.detach().numpy() distances, indices = self.index.search(image_features, k) return distances, indices def return_invoice_table(self, path=None, invoice_is_table=True, use_granular_invoice=False): if path is None and not invoice_is_table: raise ValueError("Path to invoice must be provided.") if self.invoice_json is None and invoice_is_table: raise ValueError("Path to invoice json must be provided.") if self.invoice_json_granular is None and use_granular_invoice: raise ValueError("Path to granular invoice json must be provided.") if invoice_is_table and not use_granular_invoice: return self.invoice_json[path] elif invoice_is_table and use_granular_invoice: return self.invoice_json_granular[path] pdf_path = f"{self.path_to_invoices}/{path}" reader = PdfReader(pdf_path) page = reader.pages[0] text = page.extract_text() table_text = re.search(r"Beschädigtes Teil.*?Gesamtsumme:.*?EUR", text, re.DOTALL).group() lines = table_text.splitlines() header = lines[0] other_text = "\n".join(lines[1:]) cleaned_text = re.sub(r"(?