import clip import faiss from PIL import Image from pypdf import PdfReader import pandas as pd import re import os import fitz import torch import numpy as np from tqdm import tqdm import base64 class RAG: def __init__( self, fais_index_path, clip_model="ViT-B/32", reranker=None, device="cpu", image_invoice_index_path=None, path_to_invoices=None, path_to_images=None ): self.index = faiss.read_index(fais_index_path) self.model, self.preprocess = clip.load(clip_model, device=device) self.device = device if image_invoice_index_path: self.image_invoice_index = pd.read_csv(image_invoice_index_path) self.path_to_invoices = path_to_invoices self.path_to_images = path_to_images self.reranker = reranker @staticmethod def image_to_base64(image_path): with open(image_path, "rb") as image_file: return base64.b64encode(image_file.read()) def search_text(self, text, k=1): text_features = self.model.encode_text(clip.tokenize([text]).to(self.device)) text_features /= text_features.norm(dim=-1, keepdim=True) text_features = text_features.detach().numpy() distances, indices = self.index.search(text_features, k) return distances, indices def search_image(self, image=None, image_path=None, k=1): if image is None and image_path is None: raise ValueError("Either image or image_path must be provided.") if image is None: image = Image.open(image_path) image_input = self.preprocess(image).unsqueeze(0).to(self.device) image_features = self.model.encode_image(image_input) image_features /= image_features.norm(dim=-1, keepdim=True) image_features = image_features.detach().numpy() distances, indices = self.index.search(image_features, k) return distances, indices def find_invoice(self, image=None, image_path=None, return_only_path=True, k=1, damage_description=None): if self.image_invoice_index is None: raise ValueError("No index for invoices found.") _, indices = self.search_image(image=image, image_path=image_path, k=k) img_ids = self.image_invoice_index.iloc[indices[0]]['img_id'].values invoices = self.image_invoice_index[self.image_invoice_index['img_id'].isin(img_ids)]['invoice'].values.tolist() images_paths = self.image_invoice_index[self.image_invoice_index['img_id'].isin(img_ids)]['image'].values.tolist() if self.reranker: if damage_description is None: raise ValueError("Damage description must be provided.") # images = [self.image_to_base64(f"{self.path_to_images}/{img_path}") for img_path in images_paths] images = [f"{self.path_to_images}/{img_path}" for img_path in images_paths] results = self.reranker.rank(damage_description, images, doc_ids=invoices) invoices = [doc.doc_id for doc in results] print(invoices) if return_only_path: return invoices, images_paths if not self.path_to_invoices: raise ValueError("Path to data must be provided.") invoices_tables = [] for invoice in invoices: pdf_path = f"{self.path_to_invoices}/{invoice}" reader = PdfReader(pdf_path) page = reader.pages[0] text = page.extract_text() table_text = re.search(r"Beschädigtes Teil.*?Gesamtsumme:.*?EUR", text, re.DOTALL).group() lines = table_text.splitlines() header = lines[0] other_text = "\n".join(lines[1:]) cleaned_text = re.sub(r"(?