Innov8tive commited on
Commit
829a91e
·
verified ·
1 Parent(s): 36f72f0

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +5 -4
app.py CHANGED
@@ -1,14 +1,13 @@
1
  from transformers import pipeline, AutoTokenizer, AutoModelForCausalLM
2
  import gradio as gr
3
- import pandas as pd
4
 
5
- # Load the Hugging Face model with device mapping for resource optimization
6
  model_name = "fbellame/llama2-pdf-to-quizz-13b"
7
  tokenizer = AutoTokenizer.from_pretrained(model_name)
8
  model = AutoModelForCausalLM.from_pretrained(model_name, device_map="auto")
9
  quiz_pipeline = pipeline("text2text-generation", model=model, tokenizer=tokenizer)
10
 
11
- # Example quiz data (replace with your dynamic generation logic)
12
  quiz_data = [
13
  {
14
  "question": "What is the purpose of transformers in power systems?",
@@ -54,6 +53,7 @@ def evaluate_question(rating, feedback, email, discipline, experience):
54
  def generate_mailto_link():
55
  if not feedback_list:
56
  return "No feedback to send."
 
57
  subject = "Feedback for Train the Trainer App"
58
  body_lines = ["Feedback for Train the Trainer App:\n"]
59
  for entry in feedback_list:
@@ -66,7 +66,8 @@ def generate_mailto_link():
66
  body_lines.append(f"Experience: {entry['experience']} years\n")
67
  body_lines.append("\n---\n")
68
  body = "\n".join(body_lines)
69
- mailto_link = f"mailto:[email protected]?subject={subject}&body={body.replace(' ', '%20').replace('\n', '%0A')}"
 
70
  return mailto_link
71
 
72
  # Gradio Interface
 
1
  from transformers import pipeline, AutoTokenizer, AutoModelForCausalLM
2
  import gradio as gr
 
3
 
4
+ # Load the Hugging Face model
5
  model_name = "fbellame/llama2-pdf-to-quizz-13b"
6
  tokenizer = AutoTokenizer.from_pretrained(model_name)
7
  model = AutoModelForCausalLM.from_pretrained(model_name, device_map="auto")
8
  quiz_pipeline = pipeline("text2text-generation", model=model, tokenizer=tokenizer)
9
 
10
+ # Example quiz data (replace with dynamic generation logic)
11
  quiz_data = [
12
  {
13
  "question": "What is the purpose of transformers in power systems?",
 
53
  def generate_mailto_link():
54
  if not feedback_list:
55
  return "No feedback to send."
56
+
57
  subject = "Feedback for Train the Trainer App"
58
  body_lines = ["Feedback for Train the Trainer App:\n"]
59
  for entry in feedback_list:
 
66
  body_lines.append(f"Experience: {entry['experience']} years\n")
67
  body_lines.append("\n---\n")
68
  body = "\n".join(body_lines)
69
+ body_encoded = body.replace(" ", "%20").replace("\n", "%0A")
70
+ mailto_link = f"mailto:[email protected]?subject={subject}&body={body_encoded}"
71
  return mailto_link
72
 
73
  # Gradio Interface