Spaces:
Running
Running
fixed cor
Browse files- Layoutlmv3_inference/ocr.py +15 -129
Layoutlmv3_inference/ocr.py
CHANGED
@@ -6,9 +6,12 @@ import json
|
|
6 |
import requests
|
7 |
import traceback
|
8 |
import tempfile
|
|
|
|
|
9 |
|
10 |
from PIL import Image
|
11 |
|
|
|
12 |
def preprocess_image(image_path, max_file_size_mb=1, target_file_size_mb=0.5):
|
13 |
try:
|
14 |
# Read the image
|
@@ -21,10 +24,12 @@ def preprocess_image(image_path, max_file_size_mb=1, target_file_size_mb=0.5):
|
|
21 |
cv2.imwrite(temp_file_path, enhanced)
|
22 |
|
23 |
# Check file size of the temporary file
|
24 |
-
file_size_mb = os.path.getsize(
|
|
|
25 |
|
26 |
while file_size_mb > max_file_size_mb:
|
27 |
-
print(
|
|
|
28 |
ratio = np.sqrt(target_file_size_mb / file_size_mb)
|
29 |
new_width = int(image.shape[1] * ratio)
|
30 |
new_height = int(image.shape[0] * ratio)
|
@@ -63,7 +68,11 @@ def enhance_txt(img, intensity_increase=20, bilateral_filter_diameter=9, bilater
|
|
63 |
# Convert image to grayscale
|
64 |
grayscale_img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
|
65 |
|
66 |
-
#
|
|
|
|
|
|
|
|
|
67 |
blurred = cv2.GaussianBlur(grayscale_img, (1, 1), 0)
|
68 |
|
69 |
edged = 255 - cv2.Canny(blurred, 100, 150, apertureSize=7)
|
@@ -72,7 +81,8 @@ def enhance_txt(img, intensity_increase=20, bilateral_filter_diameter=9, bilater
|
|
72 |
img = np.clip(img + intensity_increase, 0, 255).astype(np.uint8)
|
73 |
|
74 |
# Apply bilateral filter to reduce noise
|
75 |
-
img = cv2.bilateralFilter(img, bilateral_filter_diameter,
|
|
|
76 |
|
77 |
_, binary = cv2.threshold(blurred, threshold, 255, cv2.THRESH_BINARY)
|
78 |
return binary
|
@@ -91,6 +101,7 @@ def run_tesseract_on_preprocessed_image(preprocessed_image, image_path):
|
|
91 |
url = "https://api.ocr.space/parse/image"
|
92 |
|
93 |
# Define the API key and the language
|
|
|
94 |
api_key = os.getenv("ocr_space")
|
95 |
language = "eng"
|
96 |
|
@@ -210,128 +221,3 @@ def prepare_batch_for_inference(image_paths):
|
|
210 |
|
211 |
print("10. Prepared for Inference Batch")
|
212 |
return inference_batch
|
213 |
-
al_filter_diameter, bilateral_filter_sigma_color, bilateral_filter_sigma_space)
|
214 |
-
|
215 |
-
_, binary = cv2.threshold(blurred, threshold, 255, cv2.THRESH_BINARY)
|
216 |
-
return binary
|
217 |
-
|
218 |
-
|
219 |
-
def run_tesseract_on_preprocessed_image(preprocessed_image, image_path):
|
220 |
-
try:
|
221 |
-
image_name = os.path.basename(image_path)
|
222 |
-
image_name = image_name[:image_name.find('.')]
|
223 |
-
|
224 |
-
# Create the "temp" folder if it doesn't exist
|
225 |
-
temp_folder = "static/temp"
|
226 |
-
if not os.path.exists(temp_folder):
|
227 |
-
os.makedirs(temp_folder)
|
228 |
-
|
229 |
-
# Define the OCR API endpoint
|
230 |
-
url = "https://api.ocr.space/parse/image"
|
231 |
-
|
232 |
-
# Define the API key and the language
|
233 |
-
api_key = os.getenv("ocr_space")
|
234 |
-
language = "eng"
|
235 |
-
|
236 |
-
# Save the preprocessed image
|
237 |
-
cv2.imwrite(os.path.join(temp_folder, f"{image_name}_preprocessed.jpg"), preprocessed_image)
|
238 |
-
|
239 |
-
# Open the preprocessed image file as binary
|
240 |
-
with open(os.path.join(temp_folder, f"{image_name}_preprocessed.jpg"), "rb") as f:
|
241 |
-
# Define the payload for the API request
|
242 |
-
payload = {
|
243 |
-
"apikey": api_key,
|
244 |
-
"language": language,
|
245 |
-
"isOverlayRequired": True,
|
246 |
-
"OCREngine": 2
|
247 |
-
}
|
248 |
-
# Define the file parameter for the API request
|
249 |
-
file = {
|
250 |
-
"file": f
|
251 |
-
}
|
252 |
-
# Send the POST request to the OCR API
|
253 |
-
response = requests.post(url, data=payload, files=file)
|
254 |
-
|
255 |
-
# Check the status code of the response
|
256 |
-
if response.status_code == 200:
|
257 |
-
# Parse the JSON response
|
258 |
-
result = response.json()
|
259 |
-
print("---JSON file saved")
|
260 |
-
# Save the OCR result as JSON
|
261 |
-
with open(os.path.join(temp_folder, f"{image_name}_ocr.json"), 'w') as f:
|
262 |
-
json.dump(result, f)
|
263 |
-
|
264 |
-
return os.path.join(temp_folder, f"{image_name}_ocr.json")
|
265 |
-
else:
|
266 |
-
# Print the error message
|
267 |
-
print("Error: " + response.text)
|
268 |
-
return None
|
269 |
-
|
270 |
-
except Exception as e:
|
271 |
-
print(f"An error occurred during OCR request: {str(e)}")
|
272 |
-
return None
|
273 |
-
|
274 |
-
def clean_tesseract_output(json_output_path):
|
275 |
-
try:
|
276 |
-
with open(json_output_path, 'r') as json_file:
|
277 |
-
data = json.load(json_file)
|
278 |
-
|
279 |
-
lines = data['ParsedResults'][0]['TextOverlay']['Lines']
|
280 |
-
|
281 |
-
words = []
|
282 |
-
for line in lines:
|
283 |
-
for word_info in line['Words']:
|
284 |
-
word = {}
|
285 |
-
origin_box = [
|
286 |
-
word_info['Left'],
|
287 |
-
word_info['Top'],
|
288 |
-
word_info['Left'] + word_info['Width'],
|
289 |
-
word_info['Top'] + word_info['Height']
|
290 |
-
]
|
291 |
-
|
292 |
-
word['word_text'] = word_info['WordText']
|
293 |
-
word['word_box'] = origin_box
|
294 |
-
words.append(word)
|
295 |
-
|
296 |
-
return words
|
297 |
-
except (KeyError, IndexError, FileNotFoundError, json.JSONDecodeError) as e:
|
298 |
-
print(f"Error cleaning Tesseract output: {str(e)}")
|
299 |
-
return None
|
300 |
-
|
301 |
-
def prepare_batch_for_inference(image_paths):
|
302 |
-
# print("my_function was called")
|
303 |
-
# traceback.print_stack() # This will print the stack trace
|
304 |
-
print(f"Number of images to process: {len(image_paths)}") # Print the total number of images to be processed
|
305 |
-
print("1. Preparing for Inference")
|
306 |
-
tsv_output_paths = []
|
307 |
-
|
308 |
-
inference_batch = dict()
|
309 |
-
print("2. Starting Preprocessing")
|
310 |
-
# Ensure that the image is only 1
|
311 |
-
for image_path in image_paths:
|
312 |
-
print(f"Processing the image: {image_path}") # Print the image being processed
|
313 |
-
print("3. Preprocessing the Receipt")
|
314 |
-
preprocessed_image = preprocess_image(image_path)
|
315 |
-
if preprocessed_image is not None:
|
316 |
-
print("4. Preprocessing done. Running OCR")
|
317 |
-
json_output_path = run_tesseract_on_preprocessed_image(preprocessed_image, image_path)
|
318 |
-
print("5. OCR Complete")
|
319 |
-
if json_output_path:
|
320 |
-
tsv_output_paths.append(json_output_path)
|
321 |
-
|
322 |
-
print("6. Preprocessing and OCR Done")
|
323 |
-
# clean_outputs is a list of lists
|
324 |
-
clean_outputs = [clean_tesseract_output(tsv_path) for tsv_path in tsv_output_paths]
|
325 |
-
print("7. Cleaned OCR output")
|
326 |
-
word_lists = [[word['word_text'] for word in clean_output] for clean_output in clean_outputs]
|
327 |
-
print("8. Word List Created")
|
328 |
-
boxes_lists = [[word['word_box'] for word in clean_output] for clean_output in clean_outputs]
|
329 |
-
print("9. Box List Created")
|
330 |
-
inference_batch = {
|
331 |
-
"image_path": image_paths,
|
332 |
-
"bboxes": boxes_lists,
|
333 |
-
"words": word_lists
|
334 |
-
}
|
335 |
-
|
336 |
-
print("10. Prepared for Inference Batch")
|
337 |
-
return inference_batch
|
|
|
6 |
import requests
|
7 |
import traceback
|
8 |
import tempfile
|
9 |
+
from rembg import remove
|
10 |
+
|
11 |
|
12 |
from PIL import Image
|
13 |
|
14 |
+
|
15 |
def preprocess_image(image_path, max_file_size_mb=1, target_file_size_mb=0.5):
|
16 |
try:
|
17 |
# Read the image
|
|
|
24 |
cv2.imwrite(temp_file_path, enhanced)
|
25 |
|
26 |
# Check file size of the temporary file
|
27 |
+
file_size_mb = os.path.getsize(
|
28 |
+
temp_file_path) / (1024 * 1024) # Convert to megabytes
|
29 |
|
30 |
while file_size_mb > max_file_size_mb:
|
31 |
+
print(
|
32 |
+
f"File size ({file_size_mb} MB) exceeds the maximum allowed size ({max_file_size_mb} MB). Resizing the image.")
|
33 |
ratio = np.sqrt(target_file_size_mb / file_size_mb)
|
34 |
new_width = int(image.shape[1] * ratio)
|
35 |
new_height = int(image.shape[0] * ratio)
|
|
|
68 |
# Convert image to grayscale
|
69 |
grayscale_img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
|
70 |
|
71 |
+
# Find contours
|
72 |
+
contours, _ = cv2.findContours(
|
73 |
+
grayscale_img, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
|
74 |
+
|
75 |
+
# # Apply Gaussian blur
|
76 |
blurred = cv2.GaussianBlur(grayscale_img, (1, 1), 0)
|
77 |
|
78 |
edged = 255 - cv2.Canny(blurred, 100, 150, apertureSize=7)
|
|
|
81 |
img = np.clip(img + intensity_increase, 0, 255).astype(np.uint8)
|
82 |
|
83 |
# Apply bilateral filter to reduce noise
|
84 |
+
img = cv2.bilateralFilter(img, bilateral_filter_diameter,
|
85 |
+
bilateral_filter_sigma_color, bilateral_filter_sigma_space)
|
86 |
|
87 |
_, binary = cv2.threshold(blurred, threshold, 255, cv2.THRESH_BINARY)
|
88 |
return binary
|
|
|
101 |
url = "https://api.ocr.space/parse/image"
|
102 |
|
103 |
# Define the API key and the language
|
104 |
+
# api_key = "K88232854988957" # Replace with your actual OCR Space API key
|
105 |
api_key = os.getenv("ocr_space")
|
106 |
language = "eng"
|
107 |
|
|
|
221 |
|
222 |
print("10. Prepared for Inference Batch")
|
223 |
return inference_batch
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|