File size: 27,048 Bytes
421ed42
 
 
 
 
 
 
 
 
 
 
 
0a9d475
421ed42
 
 
 
 
 
 
 
 
 
 
 
 
 
c3eb6ff
421ed42
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0a9d475
421ed42
 
 
 
 
0a9d475
421ed42
 
 
 
 
 
 
 
 
0a9d475
 
 
 
 
 
 
 
 
 
 
 
 
 
 
421ed42
 
0a9d475
421ed42
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b29f4bf
421ed42
 
0a9d475
 
 
 
 
 
 
 
 
 
 
 
 
 
 
421ed42
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b29f4bf
421ed42
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0a9d475
421ed42
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0a9d475
421ed42
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0a9d475
421ed42
 
 
 
 
 
 
 
 
 
0a9d475
421ed42
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0a9d475
421ed42
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0a9d475
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d3e22b7
0a9d475
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
421ed42
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
import subprocess
import streamlink
import streamlit as st
import tempfile
import base64
import os
from dotenv import load_dotenv
from PIL import Image
from io import BytesIO  
from openai import OpenAI
import whisper
from google.cloud import vision
import re
# st.set_page_config(layout="wide")

load_dotenv()
OpenAI.api_key = os.getenv("OPENAI_API_KEY")
if not OpenAI.api_key:     
    raise ValueError("The OpenAI API key must be set in the OPENAI_API_KEY environment variable.")

whisper.api_key = os.getenv("WHISPER_API_KEY")
if not whisper.api_key:
    raise ValueError("The WHsiper API Key needs to be set in the env")
client = OpenAI()

# Set Google Cloud credentials in environment
service_account_path = os.getenv("GOOGLE_APPLICATION_CREDENTIALS")
os.environ["GOOGLE_APPLICATION_CREDENTIALS"] = 'long-equinox-392604-7912e2b6b4fd.json'

# Initialize Google Vision client
vision_client = vision.ImageAnnotatorClient()

wipro_logo_path = "Wiprologo.jpg"  # Update this path to where your logo is stored
wipro_logo = Image.open(wipro_logo_path)
# Create a layout with columns
col1, col2 = st.columns([8, 2])  # Adjust the ratio as needed

# Display the "Insightly Video" text in the first column (larger space)

# Display the logo in the second column (right side, smaller space)
with col2:
    st.image(wipro_logo, width=200)  # Adjust the width as needed

# Function to execute FFmpeg command and capture output
def execute_ffmpeg_command(command):
    try:
        result = subprocess.run(command, stdout=subprocess.PIPE, stderr=subprocess.PIPE)
        if result.returncode == 0:
            print("FFmpeg command executed successfully.")
            return result.stdout, result.stderr
        else:
            print("Error executing FFmpeg command:")
            return None, result.stderr
    except Exception as e:
        print("An error occurred during FFmpeg execution:")
        return None, str(e)
    

# Function to get transcript from audio using OpenAI Whisper
def get_transcript_from_audio(audio_file_path):
    try:
        # Load the model
        model = whisper.load_model("base")  # You can choose another model size if needed
        
        # Process the audio file and get the result
        result = model.transcribe(audio_file_path)
        
        # Get the transcript text
        transcript_text = result["text"]
        return transcript_text
    except Exception as e:
        print(f"Error submitting transcription job: {e}")
        return None

def extract_text_from_base64_frame(base64_frame):
    """Extracts text from a single base64 encoded frame using Google Cloud Vision API."""
    frame_bytes = base64.b64decode(base64_frame)  # Decode the base64 string to bytes
    image = vision.Image(content=frame_bytes)
    response = vision_client.text_detection(image=image)
    texts = response.text_annotations
    return texts[0].description.strip() if texts else "No text found."

def transcribe_uploaded_mp3(uploaded_mp3):
    try:
        # Save the uploaded MP3 file to a temporary file
        with tempfile.NamedTemporaryFile(delete=False, suffix=".mp3") as tmpfile:
            tmpfile.write(uploaded_mp3.getvalue())
            audio_file_path = tmpfile.name
 
        # You might want to process/convert the MP3 file with FFmpeg here if needed
        # For example, to ensure it's in the correct format for Whisper or to extract a specific part
        # This is optional and depends on your requirements
 
        # Transcribe the audio file using Whisper
        transcript = get_transcript_from_audio(audio_file_path)
       
        if transcript is None:
            return "Transcription failed or no transcript available."
       
        return transcript
    except Exception as e:
        return f"Failed to transcribe audio file. Error: {e}"

def analyze_image_with_google_vision_api(base64_frame):
    """Analyze image content using Google Cloud Vision API."""
    frame_bytes = base64.b64decode(base64_frame)  # Decode the base64 string to bytes
    image = vision.Image(content=frame_bytes)

    response = vision_client.label_detection(image=image)
    labels = response.label_annotations

    if labels:
        return ', '.join([label.description for label in labels])
    else:
        return "No labels detected."

def analyze_content_with_openai(text, description,labels):
    """Analyze the combined text and image labels to categorize the image using OpenAI."""
    try:
        response = client.chat.completions.create(
            model="gpt-4-vision-preview",
            messages=[
                {"role": "system", "content": "Classify the following image into one or more of these categories based on the extracted text, description of the frames and image labels. Take valuable information from every frame even if available in only one out of many frames. \
                 Dont check on the authenticity of the content .Doesn't matter is something from the frame is fake/joke/etc. We dont need context for the categorisation.\
                 Categories : Bullying, Nudity & Adult Content, Graphic Violence, Illegal Goods, Child Safety, Sexual Abuse, Profanity, Self Harm/Suicide, Violent Extremism and None. Return the following: Give out the result as Category - {whatever the category(s) is/are} and then GIVE A PROPER JUSTIFICATION of the image categorization for that conclusion WITHOUT any assumption"},
                {"role": "user", "content": f"Text: {text}\nDescription: {description}\n Labels: {labels}"}
            ],
            max_tokens=4096, 
            n=1
        )
        if response.choices:
            result_message = response.choices[0].message.content
            return result_message.strip()
        else:
            return "Analysis failed or was inconclusive."
    except Exception as e:
        return f"Failed to analyze content with OpenAI. Error: {e}"

def display_categories(analysis_result, categories):
    """Display categories with highlight based on analysis result."""
    # Extracting the 'xyz' from the analysis_result
    try:
        extracted_text = analysis_result.split('Category - ')[1].split('\n')[0].strip()
        category_keywords = [x.strip() for x in extracted_text.split(',')]
    except IndexError:
        # Default to None if parsing fails
        category_keyword = 'None'
    
    num_cols = 3
    rows = [categories[i:i + num_cols] for i in range(0, len(categories), num_cols)]
 
    matched_style = """
        border: 2px solid #00FF00;
        padding: 10px;
        border-radius: 10px;
        text-align: center;
        background-color: #333333;
        color: #FFFFFF;
        margin: 5px;
        box-shadow: 0 2px 4px 0 rgba(255,255,255,0.2);
    """
    unmatched_style = """
        border: 1px solid #555555;
        padding: 10px;
        border-radius: 10px;
        text-align: center;
        background-color: #222222;
        color: #AAAAAA;
        margin: 5px;
    """
 
    # Display categories in a grid layout
    for row in rows:
        cols = st.columns(num_cols)
        for idx, category in enumerate(row):
            with cols[idx]:
                # Check if the category matches any in the list of extracted categories
                if category.lower() in [k.lower() for k in category_keywords]:
                    # Highlight matched category
                    st.markdown(f"<div style='{matched_style}'><h4 style='margin:0;'>{category}</h4></div>", unsafe_allow_html=True)
                else:
                    # Display non-matched category
                    st.markdown(f"<div style='{unmatched_style}'><h4 style='margin:0;'>{category}</h4></div>", unsafe_allow_html=True)

def execute_fmpeg_command(command):
    try:
        result = subprocess.run(command, stdout=subprocess.PIPE, stderr=subprocess.PIPE, check=True)
        return result.stdout  # Return just the stdout part, not a tuple
    except subprocess.CalledProcessError as e:
        print(f"FFmpeg command failed with error: {e.stderr.decode()}")
        return None

def search_keyword(keyword, frame_texts):
    return [index for index, text in st.session_state.frame_texts.items() if keyword.lower() in text.lower()]



# Function to generate description for video frames
def generate_description(base64_frames,prompt):
    try:
        prompt_messages = [
            {
                "role": "user",
                "content": [
                    prompt ,
                    *map(lambda x: {"image": x, "resize": 428}, base64_frames),
                ],
            },
        ]
        response = client.chat.completions.create(
            model="gpt-4-vision-preview",
            messages=prompt_messages,
            max_tokens=3000,
        )
        description = response.choices[0].message.content

        # Use regular expression to find frame numbers
        frame_numbers = re.findall(r'Frames\s*:\s*(\d+(?:,\s*\d+)*)', response.choices[0].message.content)

        # Convert the string of numbers into a list of integers
        if frame_numbers:
            frame_numbers = [int(num) for num in frame_numbers[0].split(',')]
        else:
            frame_numbers = []

        print("Frame numbers to extract:", frame_numbers)

        return description, frame_numbers
    
    except Exception as e:
        print(f"Error in generate_description: {e}")
        return None, []

def generate_overall_description(transcript_text, video_description):
    try:
        combined_input = f"Transcript: {transcript_text}\n\nVideo Description: {video_description}\n\n"
        prompt_message = "Based on the above transcript and video description, generate a very detailed description about the sequence of events in the video and from the transcript within 500 words."
        
        prompt_messages = [
            {"role": "user", "content": combined_input + prompt_message}
        ]
        
        response = client.chat.completions.create(
            model="gpt-4",
            messages=prompt_messages,
            max_tokens=1000,  # Increased from 300 to allow for a more detailed response
        )
        
        return response.choices[0].message.content.strip()
    except Exception as e:
        print(f"Error in generate_overall_description: {e}")
        return None

with col1:
    is_logo_path = "IntelliStreamLogo.png"  # Update this path to where your logo is stored
    is_logo = Image.open(is_logo_path)
    st.image(is_logo, width=200)

    st.markdown("<h1 style='text-align: left; color: white;'></h1>", unsafe_allow_html=True)

# Streamlit UI
 
    st.title("Insightly Video")
    stream_url = st.text_input("Enter the live stream URL (YouTube, Twitch, etc.):")
    #keyword = st.text_input("Enter a keyword to filter the frames (optional):")
    extract_frames_button = st.button("Extract Frames")
    uploaded_video = st.file_uploader("Or upload a video file (MP4):", type=["mp4"])
    prompt1 = "keyword is " + st.text_input("Enter a keyword for analysis:")
    prompt2 = "1. Generate a description for this sequence of video frames in about 90 words. 2.Return the following:\
                        i. List of objects in the video \
                        ii. Any restrictive content or sensitive content and if so which frame. \
                        iii. The frames is supposed to contain news content and we want to detect non-news content such as an advertisement. \
                        So analyze specifically for any indications that the content might be promotional or an advertisement. \
                        Find the most portions of a video related to the keyword.  \
                        The output will be targeted towards social media (like TikTok or Reels) or to news broadcasts. \
                        For the provided frames return the frames related to the keyword\
                        I am trying to fill these frames for a TikTok video. \
                        Hence while selecting the frames keep that in mind. \
                        You do not have to give me the script of the Tiktok video. \
                        Just return the most interesting frames in a sequence that will come for a tiktok video. \
                        List all frame numbers separated by commas at the end like this for eg, Frames : 1,2,4,7,9"
    prompt = prompt2 + prompt1
    # Slider to select the number of seconds for extraction
    seconds = st.slider("Select the number of seconds for extraction:", min_value=1, max_value=60, value=10)

    uploaded_mp3 = st.file_uploader("Upload an MP3 file for transcription:", type=["mp3"])
    
    
    # Check if an MP3 file has been uploaded
    if uploaded_mp3 is not None:
        # Call the transcription function with the uploaded MP3 file
        transcript = transcribe_uploaded_mp3(uploaded_mp3)
    
        # Display the transcript
        st.text_area("Transcript:", value=transcript, height=300)
    else:
        st.write("Please upload an MP3 file to get started.")

    if extract_frames_button and stream_url:
    # Execute FFmpeg command to extract frames

    # Check if URL is provided

            streams = streamlink.streams(stream_url)
            if "best" in streams:
                stream_url = streams["best"].url

                ffmpeg_command = [
                'ffmpeg',          # Input stream URL
                '-t', str(seconds),         # Duration to process the input (selected seconds)
                '-vf', 'fps=1',             # Extract one frame per second
                '-f', 'image2pipe',         # Output format as image2pipe
                '-c:v', 'mjpeg',            # Codec for output video
                '-an',                      # No audio
                '-'
            ]
                
            # Determine the input source for FFmpeg
            input_source = stream_url  # Default to stream URL

            # Insert the input source into the FFmpeg command
            ffmpeg_command.insert(1, input_source)
            ffmpeg_command.insert(1, '-i')

            # Execute FFmpeg command
            ffmpeg_output, _ = execute_ffmpeg_command(ffmpeg_command)

        # Modify the section where you display frames to include text extraction and display
        # Modify the section where base64 encoded frames are processed
        # After successfully executing the FFmpeg command to capture frames
            if ffmpeg_output:
                st.write("Frames Extracted:")
                frame_bytes_list = ffmpeg_output.split(b'\xff\xd8')[1:]  # Correct splitting for JPEG frames
                n_frames = len(frame_bytes_list)
                base64_frames = [base64.b64encode(b'\xff\xd8' + frame_bytes).decode('utf-8') for frame_bytes in frame_bytes_list]

                categories_results = []
                frame_texts = {}

                for idx, frame_base64 in enumerate(base64_frames):
                    extracted_text = extract_text_from_base64_frame(frame_base64)
                    frame_texts[idx] = extracted_text

                    # Use Streamlit columns for side-by-side display (1 column for image, 1 for text)
                  #  col1, col2 = st.columns([3, 2])
                  #  with col1:
                   #     frame_bytes = base64.b64decode(frame_base64)
                   #     st.image(Image.open(BytesIO(frame_bytes)), caption=f'Frame {idx + 1}', use_column_width=True)
                   # with col2:
                   #     st.write(f"Extracted Text: {extracted_text}")

                #    if 'base64_frames' not in st.session_state:
                #        st.session_state.base64_frames = []  # Populate this when frames are first extracted
                #    if 'frame_texts' not in st.session_state:
                #        st.session_state.frame_texts = {}  

                st.write("Analysis Results for All Frames:")
                # Assuming 'categories' is defined with all possible categories you're interested in
                categories = ["Bullying", "Nudity & Adult Content", "Graphic Violence", "Illegal Goods", "Child Safety", "Sexual Abuse", "Profanity", "Self Harm/Suicide", "Violent Extremism","None"]
                # Here, you might want to process combined_analysis_results to summarize or just display them
    
            #    display_categories(" ".join(categories_results), categories)
        
                # Extract audio
            audio_command = [
                'ffmpeg',
                '-i', stream_url,           # Input stream URL
                '-vn',                      # Ignore the video for the audio output
                '-acodec', 'libmp3lame',    # Set the audio codec to MP3
                '-t', str(seconds),         # Duration for the audio extraction (selected seconds)
                '-f', 'mp3',                # Output format as MP3
                '-'
            ]
            audio_output, _ = execute_ffmpeg_command(audio_command)

            st.write("Extracted Audio:")
            audio_tempfile = tempfile.NamedTemporaryFile(delete=False, suffix=".mp3")
            audio_tempfile.write(audio_output)
            audio_tempfile.close()

            st.audio(audio_output, format='audio/mpeg', start_time=0)

            # Get the transcript from whisper
            transcript_text = get_transcript_from_audio(audio_tempfile.name)
            if transcript_text:
                st.markdown("**Transcript:**")
                st.write(transcript_text)
            else:
                st.write("Failed to retrieve transcript.")


        # Get consolidated description for all frames
            if ffmpeg_output:
                description = generate_description(base64_frames,prompt)
                if description:
                    st.markdown("**Frame Description:**")
                    st.write(description)
                else:
                    st.write("Failed to generate description.")

            image_labels = analyze_image_with_google_vision_api(frame_base64)
        #   st.write(image_labels)
            analysis_result = analyze_content_with_openai(extracted_text, description, image_labels)
            st.write(analysis_result)
            display_categories(analysis_result, categories)
            categories_results.append(analysis_result)  # Collect results for summary

            # Get the transcript from whisper
            transcript_text = get_transcript_from_audio(audio_tempfile.name)  
            description = generate_description(base64_frames,prompt)
        # Generate overall description using transcript and video description
            overall_description = generate_overall_description(transcript_text, description)
            if overall_description:
                st.markdown("**Consolidated Description:**")
                st.write(overall_description)
            else:
                st.write("Failed to generate overall description.")

    elif uploaded_video is not None and extract_frames_button:
        with tempfile.NamedTemporaryFile(delete=False, suffix=".mp4") as tmpfile:
            tmpfile.write(uploaded_video.getvalue())
            video_file_path = tmpfile.name

            ffmpeg_command = [
                'ffmpeg',          # Input stream URL
                '-i', video_file_path, 
                '-t', str(seconds),          # Duration to process the input (selected seconds)
                '-vf', 'fps=1',             # Extract one frame per second
                '-f', 'image2pipe',         # Output format as image2pipe
                '-c:v', 'mjpeg',            # Codec for output video
                '-an',                      # No audio
                '-'
            ]

            ffmpeg_output = execute_fmpeg_command(ffmpeg_command)

            if ffmpeg_output:
                st.write("Frames Extracted:")
                frame_bytes_list = ffmpeg_output.split(b'\xff\xd8')[1:]  # Correct splitting for JPEG frames
                n_frames = len(frame_bytes_list)
                base64_frames = [base64.b64encode(b'\xff\xd8' + frame_bytes).decode('utf-8') for frame_bytes in frame_bytes_list]

                frame_dict = {}
                categories_results = []
                frame_texts = {}

                for idx, frame_base64 in enumerate(base64_frames):
                    extracted_text = extract_text_from_base64_frame(frame_base64)
                    frame_texts[idx] = extracted_text
                    # Use Streamlit columns for side-by-side display (1 column for image, 1 for text)
                    col1, col2 = st.columns([3, 2])
                    with col1:
                        frame_bytes = base64.b64decode(frame_base64)
                        frame_dict[idx + 1] = frame_bytes
                        st.image(Image.open(BytesIO(frame_bytes)), caption=f'Frame {idx + 1}', use_column_width=True)
                    with col2:
                        st.write(f"Extracted Text: {extracted_text}")

                
                st.write("Analysis Results for All Frames:")
                # Assuming 'categories' is defined with all possible categories you're interested in
                categories = ["Bullying", "Nudity & Adult Content", "Graphic Violence", "Illegal Goods", "Child Safety", "Sexual Abuse", "Profanity", "Self Harm/Suicide", "Violent Extremism", "None"]
                # Here, you might want to process combined_analysis_results to summarize or just display them
    
                

    
            # Extract audio
            audio_command = [
                'ffmpeg',
                '-i', video_file_path,  
                '-t', str(seconds), 
                '-vf', 'fps=1',         # Input stream URL
                '-vn',                      # Ignore the video for the audio output
                '-acodec', 'libmp3lame',    # Set the audio codec to MP3        # Duration for the audio extraction (selected seconds)
                '-f', 'mp3',                # Output format as MP3
                '-'
            ]
            audio_output, _ = execute_ffmpeg_command(audio_command)

            st.write("Extracted Audio:")
            audio_tempfile = tempfile.NamedTemporaryFile(delete=False, suffix=".mp3")
            audio_tempfile.write(audio_output)
            audio_tempfile.close()

            st.audio(audio_output, format='audio/mpeg', start_time=0)

            # Get the transcript from whisper
            transcript_text = get_transcript_from_audio(audio_tempfile.name)
            if transcript_text:
                st.markdown("**Transcript:**")
                st.write(transcript_text)
            else:
                st.write("Failed to retrieve transcript.")

                # Get consolidated description for all frames
            if ffmpeg_output:
                description,frame_numbers = generate_description(base64_frames,prompt)
                if description:
                    st.markdown("**Frame Description:**")
                    st.write(description)
                else:
                    st.write("Failed to generate description.")

            image_labels = analyze_image_with_google_vision_api(frame_base64)
        #  st.write(image_labels)
            analysis_result = analyze_content_with_openai(extracted_text, description, image_labels)
            st.write(analysis_result)
            display_categories(analysis_result, categories)
            categories_results.append(analysis_result)  # Collect results for summary

            # if st.button("Overall Description"):  
            #     audio_tempfile = tempfile.NamedTemporaryFile(delete=False, suffix=".mp3")
            #     audio_tempfile.write(audio_output)
            #     audio_tempfile.close()

                    # Get the transcript from whisper
            transcript_text = get_transcript_from_audio(audio_tempfile.name)  
            description = generate_description(base64_frames,prompt)

            if frame_numbers:
                print("Frame numbers to extract:", frame_numbers)  # Check frame numbers

            # Create a mapping from original frame numbers to sequential numbers
            frame_mapping = {}
            new_frame_numbers = []
            for idx, frame_number in enumerate(sorted(frame_numbers)):
                frame_mapping[frame_number] = idx + 1
                new_frame_numbers.append(idx + 1)

            print("New frame numbers:", new_frame_numbers)
            print("Frame mapping:", frame_mapping)

            # Create a temporary directory to store images
            with tempfile.TemporaryDirectory() as temp_dir:
                image_paths = []
                for frame_number in frame_numbers:
                    if frame_number in frame_dict:
                        frame_path = os.path.join(temp_dir, f'frame_{frame_mapping[frame_number]:03}.jpg')  # Updated file naming
                        image_paths.append(frame_path)
                        with open(frame_path, 'wb') as f:
                            f.write(frame_dict[frame_number])
                        
                        #image = Image.open(BytesIO(frame_bytes))
                        #st.image(image, caption='Selected Frame', use_column_width=True)
                        #with open(frame_path, "rb") as file:
                        #    btn = st.download_button(
                        #        label="Download Frame",
                        #        data=file,
                        #        file_name=f'frame_{frame_number}.jpg',
                        #        mime="image/jpeg"
                        #    )
                # Once all selected frames are saved as images, create a video from them using FFmpeg
                video_output_path =  os.path.join(temp_dir, 'output7.mp4')
                framerate = 1  # Adjust framerate based on the number of frames
                ffmpeg_command = [
                    'ffmpeg',
                    '-framerate', str(framerate),  # Set framerate based on the number of frames
                    '-i', os.path.join(temp_dir, 'frame_%03d.jpg'),  # Input pattern for all frame files
                    '-c:v', 'libx264',
                    '-pix_fmt', 'yuv420p',
                    video_output_path
                ]

                print("FFmpeg command:", ' '.join(ffmpeg_command))  # Debug FFmpeg command

                subprocess.run(ffmpeg_command, stdout=subprocess.PIPE, stderr=subprocess.PIPE)

                # Display or provide a download link for the created video
                st.header("Final Video")
                st.video(video_output_path)
        # Generate overall description using transcript and video description
            overall_description = generate_overall_description(transcript_text, description)
            if overall_description:
                st.markdown("**Consolidated Description:**")
                st.write(overall_description)
            else:
                st.write("Failed to generate overall description.")
    
    else:
        st.write(" ")