Spaces:
Running
Running
#THIS IS THE FINAL WORKING VIDEO - TEGNA FINAL TIKTOK. | |
import subprocess | |
import streamlit as st | |
import tempfile | |
import base64 | |
import os | |
from dotenv import load_dotenv | |
from PIL import Image | |
from io import BytesIO | |
from openai import OpenAI | |
import re | |
load_dotenv() | |
OpenAI.api_key = os.getenv("OPENAI_API_KEY") | |
if not OpenAI.api_key: | |
raise ValueError("The OpenAI API key must be set in the OPENAI_API_KEY environment variable.") | |
client = OpenAI() | |
# Create a layout with columns | |
col1, col2 = st.columns([8, 2]) # Adjust the ratio as needed | |
def execute_ffmpeg_command(command): | |
try: | |
result = subprocess.run(command, stdout=subprocess.PIPE, stderr=subprocess.PIPE) | |
if result.returncode == 0: | |
print("FFmpeg command executed successfully.") | |
return result.stdout, result.stderr | |
else: | |
print("Error executing FFmpeg command:") | |
return None, result.stderr | |
except Exception as e: | |
print("An error occurred during FFmpeg execution:") | |
return None, str(e) | |
def execute_fmpeg_command(command): | |
try: | |
result = subprocess.run(command, stdout=subprocess.PIPE, stderr=subprocess.PIPE, check=True) | |
return result.stdout # Return just the stdout part, not a tuple | |
except subprocess.CalledProcessError as e: | |
print(f"FFmpeg command failed with error: {e.stderr.decode()}") | |
return None | |
def search_keyword(keyword, frame_texts): | |
return [index for index, text in st.session_state.frame_texts.items() if keyword.lower() in text.lower()] | |
frame_numbers = [] | |
# Function to generate description for video frames | |
def generate_description(base64_frames): | |
try: | |
prompt_messages = [ | |
{ | |
"role": "user", | |
"content": [ " Find the most interesting / impactful portions of a video. The output will be targeted towards social media (like TikTok or Reels) or to news broadcasts. For the provided frames return the most interesting / impactful frames that will hold the interest of an audience and also describe why you chose it. I am trying to fill these frames for a TikTok video. Hence while selecting the frames keep that in mind. You do not have to give me the script of the Tiktok vfideo. Just return the most interesting frames in a sequence that will come for a tiktok video. List all frame numbers separated by commas at the end like this for eg, Frames : 1,2,4,7,9", | |
*map(lambda x: {"image": x, "resize": 428}, base64_frames), | |
], | |
}, | |
] | |
response = client.chat.completions.create( | |
model="gpt-4-vision-preview", | |
messages=prompt_messages, | |
max_tokens=3000, | |
) | |
description = response.choices[0].message.content | |
# Use regular expression to find frame numbers | |
frame_numbers = re.findall(r'Frames\s*:\s*(\d+(?:,\s*\d+)*)', response.choices[0].message.content) | |
# Convert the string of numbers into a list of integers | |
if frame_numbers: | |
frame_numbers = [int(num) for num in frame_numbers[0].split(',')] | |
else: | |
frame_numbers = [] | |
print("Frame numbers to extract:", frame_numbers) | |
return description, frame_numbers | |
except Exception as e: | |
print(f"Error in generate_description: {e}") | |
return None, [] | |
with col2: | |
pass | |
with col1: | |
is_logo_path = "IntelliStreamLogo.png" # Update this path to where your logo is stored | |
is_logo = Image.open(is_logo_path) | |
st.image(is_logo, width=200) | |
st.markdown("<h1 style='text-align: left; color: white;'></h1>", unsafe_allow_html=True) | |
# Streamlit UI | |
st.title("Insightly Video") | |
uploaded_video = st.file_uploader("Or upload a video file (MP4):", type=["mp4"]) | |
extract_frames_button = st.button("Extract Frames") | |
if uploaded_video is not None and extract_frames_button: | |
with tempfile.NamedTemporaryFile(delete=False, suffix=".mp4") as tmpfile: | |
tmpfile.write(uploaded_video.getvalue()) | |
video_file_path = tmpfile.name | |
# Command to extract one frame per second for the entire video duration | |
ffmpeg_command = [ | |
'ffmpeg', | |
'-i', video_file_path, | |
'-vf', 'fps=0.25', | |
'-f', 'image2pipe', | |
'-c:v', 'mjpeg', | |
'-an', | |
'-' | |
] | |
ffmpeg_output = execute_fmpeg_command(ffmpeg_command) | |
if ffmpeg_output: | |
st.write("Frames Extracted:") | |
frame_bytes_list = ffmpeg_output.split(b'\xff\xd8')[1:] # Correct splitting for JPEG frames | |
n_frames = len(frame_bytes_list) | |
base64_frames = [base64.b64encode(b'\xff\xd8' + frame_bytes).decode('utf-8') for frame_bytes in frame_bytes_list] | |
frame_dict = {} | |
for idx, frame_base64 in enumerate(base64_frames): | |
col1, col2 = st.columns([3, 2]) | |
with col1: | |
frame_bytes = base64.b64decode(frame_base64) | |
frame_dict[idx + 1] = frame_bytes | |
st.image(Image.open(BytesIO(frame_bytes)), caption=f'Frame {idx + 1}', use_column_width=True) | |
with col2: | |
pass | |
# Extract audio for the entire video | |
audio_command = [ | |
'ffmpeg', | |
'-i', video_file_path, | |
'-vn', | |
'-acodec', 'libmp3lame', | |
'-f', 'mp3', | |
'-' | |
] | |
audio_output, _ = execute_ffmpeg_command(audio_command) | |
st.write("Extracted Audio:") | |
audio_tempfile = tempfile.NamedTemporaryFile(delete=False, suffix=".mp3") | |
audio_tempfile.write(audio_output) | |
audio_tempfile.close() | |
st.audio(audio_output, format='audio/mpeg', start_time=0) | |
# Get consolidated description for all frames | |
if ffmpeg_output: | |
description, frame_numbers = generate_description(base64_frames) | |
if description: | |
st.header("Frame Description:") | |
st.write(description) | |
else: | |
st.write("Failed to generate description.") | |
if frame_numbers: | |
print("Frame numbers to extract:", frame_numbers) # Check frame numbers | |
# Create a mapping from original frame numbers to sequential numbers | |
frame_mapping = {} | |
new_frame_numbers = [] | |
for idx, frame_number in enumerate(sorted(frame_numbers)): | |
frame_mapping[frame_number] = idx + 1 | |
new_frame_numbers.append(idx + 1) | |
print("New frame numbers:", new_frame_numbers) | |
print("Frame mapping:", frame_mapping) | |
# Create a temporary directory to store images | |
with tempfile.TemporaryDirectory() as temp_dir: | |
image_paths = [] | |
for frame_number in frame_numbers: | |
if frame_number in frame_dict: | |
frame_path = os.path.join(temp_dir, f'frame_{frame_mapping[frame_number]:03}.jpg') # Updated file naming | |
image_paths.append(frame_path) | |
with open(frame_path, 'wb') as f: | |
f.write(frame_dict[frame_number]) | |
# Once all selected frames are saved as images, create a video from them using FFmpeg | |
video_output_path = os.path.join(temp_dir, 'output.mp4') | |
framerate = 1 # Adjust framerate based on the number of frames | |
ffmpeg_command = [ | |
'ffmpeg', | |
'-framerate', str(framerate), # Set framerate based on the number of frames | |
'-i', os.path.join(temp_dir, 'frame_%03d.jpg'), # Input pattern for all frame files | |
'-c:v', 'libx264', | |
'-pix_fmt', 'yuv420p', | |
video_output_path | |
] | |
print("FFmpeg command:", ' '.join(ffmpeg_command)) # Debug FFmpeg command | |
subprocess.run(ffmpeg_command, stdout=subprocess.PIPE, stderr=subprocess.PIPE) | |
# Display or provide a download link for the created video | |
st.header("Final Video") | |
st.video(video_output_path) | |