File size: 11,699 Bytes
98950ac f321ade 41f7b15 98c48e9 9976695 02a9726 5b50998 02a9726 5b50998 98c48e9 98950ac f321ade 41f7b15 f321ade 41f7b15 f321ade 41f7b15 f321ade 41f7b15 f321ade 41f7b15 f321ade 98950ac ef67a66 b8175a8 ef67a66 b8175a8 ef67a66 e557ff0 41f7b15 b8175a8 5b50998 b8175a8 e557ff0 f321ade e557ff0 b8175a8 41f7b15 b8175a8 86d28da b8175a8 86d28da b8175a8 98c48e9 b8175a8 98c48e9 b8175a8 86d28da b8175a8 5b50998 98c48e9 9976695 304c449 9976695 304c449 9976695 304c449 9976695 304c449 9976695 9213ba3 9976695 9213ba3 9976695 9213ba3 304c449 9213ba3 304c449 9213ba3 304c449 9213ba3 304c449 9976695 9213ba3 9976695 a5b0df3 98950ac 9976695 9213ba3 9976695 371f76e 9976695 9213ba3 9976695 98950ac 02a9726 7fccc04 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 |
from Bio.PDB import MMCIFParser, PDBIO
from folding_studio.client import Client
from folding_studio.query.boltz import BoltzQuery, BoltzParameters
from pathlib import Path
import gradio as gr
import hashlib
import logging
import numpy as np
import os
import plotly.graph_objects as go
import pandas as pd
from scipy.stats import spearmanr
from molecule import molecule
# Configure logging
logging.basicConfig(
level=logging.INFO,
format='%(asctime)s - %(levelname)s - %(message)s',
handlers=[
logging.StreamHandler(),
]
)
logger = logging.getLogger(__name__)
def convert_cif_to_pdb(cif_path: str, pdb_path: str) -> None:
"""Convert a .cif file to .pdb format using Biopython.
Args:
cif_path (str): Path to input .cif file
pdb_path (str): Path to output .pdb file
"""
# Parse the CIF file
parser = MMCIFParser()
structure = parser.get_structure("structure", cif_path)
# Save as PDB
io = PDBIO()
io.set_structure(structure)
io.save(pdb_path)
def call_boltz(seq_file: Path | str, api_key: str, output_dir: Path) -> None:
"""Call Boltz prediction."""
# Initialize parameters with CLI-provided values
parameters = {
"recycling_steps": 3,
"sampling_steps": 200,
"diffusion_samples": 1,
"step_scale": 1.638,
"msa_pairing_strategy": "greedy",
"write_full_pae": False,
"write_full_pde": False,
"use_msa_server": True,
"seed": 0,
"custom_msa_paths": None,
}
# Create a client using API key
logger.info("Authenticating client with API key")
client = Client.from_api_key(api_key=api_key)
# Define query
seq_file = Path(seq_file)
query = BoltzQuery.from_file(seq_file, query_name="gradio", parameters=BoltzParameters(**parameters))
query.save_parameters(output_dir)
logger.info("Payload: %s", query.payload)
# Send a request
logger.info("Sending request to Folding Studio API")
response = client.send_request(query, project_code=os.environ["FOLDING_PROJECT_CODE"])
# Access confidence data
logger.info("Confidence data: %s", response.confidence_data)
response.download_results(output_dir=output_dir, force=True, unzip=True)
logger.info("Results downloaded to %s", output_dir)
def predict(sequence: str, api_key: str) -> str:
"""Predict protein structure from amino acid sequence using Boltz model.
Args:
sequence (str): Amino acid sequence to predict structure for
api_key (str): Folding API key
Returns:
str: HTML iframe containing 3D molecular visualization
"""
# Set up unique output directory based on sequence hash
seq_id = hashlib.sha1(sequence.encode()).hexdigest()
seq_file = Path(f"sequence_{seq_id}.fasta")
_write_fasta_file(seq_file, sequence)
output_dir = Path(f"sequence_{seq_id}")
output_dir.mkdir(parents=True, exist_ok=True)
# Check if prediction already exists
pred_cif = list(output_dir.rglob("*_model_0.cif"))
if not pred_cif:
# Run Boltz prediction
logger.info(f"Predicting {seq_file.stem}")
call_boltz(seq_file=seq_file, api_key=api_key, output_dir=output_dir)
logger.info("Prediction done. Output directory: %s", output_dir)
else:
logger.info("Prediction already exists. Output directory: %s", output_dir)
# output_dir = Path("boltz_results") # debug
# Convert output CIF to PDB
pred_cif = list(output_dir.rglob("*_model_0.cif"))[0]
logger.info("Output file: %s", pred_cif)
converted_pdb_path = str(output_dir / "pred.pdb")
convert_cif_to_pdb(str(pred_cif), str(converted_pdb_path))
logger.info("Converted PDB file: %s", converted_pdb_path)
# Generate molecular visualization
mol = _create_molecule_visualization(
converted_pdb_path,
sequence,
)
plddt_file = list(pred_cif.parent.glob("plddt_*.npz"))[0]
logger.info("plddt file: %s", plddt_file)
plddt_vals = np.load(plddt_file)["plddt"]
return _wrap_in_iframe(mol), add_plddt_plot(plddt_vals=plddt_vals)
def _write_fasta_file(filepath: Path, sequence: str) -> None:
"""Write sequence to FASTA file."""
with open(filepath, "w") as f:
f.write(f">A|protein\n{sequence}")
def _create_molecule_visualization(pdb_path: Path, sequence: str) -> str:
"""Create molecular visualization using molecule module."""
return molecule(
str(pdb_path),
lenSeqs=1,
num_res=len(sequence),
selectedResidues=list(range(1, len(sequence) + 1)),
allSeqs=[sequence],
sequences=[{
"Score": 0,
"RMSD": 0,
"Recovery": 0,
"Mean pLDDT": 0,
"seq": sequence
}],
)
def _wrap_in_iframe(content: str) -> str:
"""Wrap content in an HTML iframe with appropriate styling and permissions."""
return f"""<iframe
name="result"
style="width: 100%; height: 100vh;"
allow="midi; geolocation; microphone; camera; display-capture; encrypted-media;"
sandbox="allow-modals allow-forms allow-scripts allow-same-origin allow-popups allow-top-navigation-by-user-activation allow-downloads"
allowfullscreen=""
allowpaymentrequest=""
frameborder="0"
srcdoc='{content}'
></iframe>"""
def add_plddt_plot(plddt_vals: list[float]) -> str:
"""Create a plot of metrics."""
visible = True
plddt_trace = go.Scatter(
x=np.arange(len(plddt_vals)),
y=plddt_vals,
hovertemplate="<i>pLDDT</i>: %{y:.2f} <br><i>Residue index:</i> %{x}<br>",
name="seq",
visible=visible,
)
plddt_fig = go.Figure(data=[plddt_trace])
plddt_fig.update_layout(
title="pLDDT",
xaxis_title="Residue index",
yaxis_title="pLDDT",
height=500,
template="simple_white",
legend=dict(yanchor="bottom", y=0.01, xanchor="left", x=0.99),
)
return plddt_fig
def fake_predict_and_correlate(spr_data_with_scores: pd.DataFrame, score_cols: list[str]) -> tuple[pd.DataFrame, go.Figure]:
"""Fake predict structures of all complexes and correlate the results."""
corr_data = []
spr_data_with_scores["log_kd"] = np.log10(spr_data_with_scores["KD (nM)"])
kd_col = "KD (nM)"
for score_col in score_cols:
logger.info(f"Computing correlation between {score_col} and KD (nM)")
res = spearmanr(spr_data_with_scores[kd_col], spr_data_with_scores[score_col])
corr_data.append({"score": score_col, "correlation": res.statistic, "p-value": res.pvalue})
logger.info(f"Correlation between {score_col} and KD (nM): {res.statistic}")
corr_data = pd.DataFrame(corr_data)
# Find the lines in corr_data with NaN values and remove them
corr_data = corr_data[corr_data["correlation"].notna()]
logger.info("Correlation data: %s", corr_data)
# Sort correlation data by correlation value
corr_data = corr_data.sort_values('correlation', ascending=True)
# Create bar plot of correlations
corr_ranking_plot = go.Figure(data=[
go.Bar(
x=corr_data["correlation"],
y=corr_data["score"],
name="correlation",
orientation='h',
hovertemplate="<i>Score:</i> %{y}<br><i>Correlation:</i> %{x:.3f}<br>"
)
])
corr_ranking_plot.update_layout(
title="Correlation with Binding Affinity",
yaxis_title="Score Type",
xaxis_title="Spearman Correlation",
template="simple_white",
showlegend=False
)
# corr_plot is a scatter plot of the correlation between the binding affinity and each of the scores
scatters = []
for score_col in score_cols:
scatters.append(
go.Scatter(
x=spr_data_with_scores[kd_col],
y=spr_data_with_scores[score_col],
name=f"{kd_col} vs {score_col}",
mode='markers', # Only show markers/dots, no lines
hovertemplate="<i>Score:</i> %{y}<br><i>KD:</i> %{x:.2f}<br>"
)
)
corr_plot = go.Figure(data=scatters)
cols_to_show = [kd_col]
cols_to_show.extend(score_cols)
return spr_data_with_scores[cols_to_show], corr_ranking_plot, corr_plot
demo = gr.Blocks(title="Folding Studio: structure prediction with Boltz-1")
with demo:
with gr.Tabs() as tabs:
with gr.TabItem("Inference"):
gr.Markdown("# Input")
with gr.Row():
with gr.Column():
sequence = gr.Textbox(label="Sequence", value="")
api_key = gr.Textbox(label="Folding API Key", type="password")
gr.Markdown("# Output")
with gr.Row():
predict_btn = gr.Button("Predict")
with gr.Row():
with gr.Column():
mol_output = gr.HTML()
with gr.Column():
metrics_plot = gr.Plot(label="pLDDT")
predict_btn.click(
fn=predict,
inputs=[sequence, api_key],
outputs=[mol_output, metrics_plot]
)
with gr.TabItem("Correlations"):
gr.Markdown("# Upload binding affinity data")
spr_data_with_scores = pd.read_csv("spr_af_scores_mapped.csv")
with gr.Row():
csv_file = gr.File(label="Upload CSV file", file_types=[".csv"])
with gr.Row():
dataframe = gr.Dataframe(label="Binding Affinity Data")
gr.Markdown("# Prediction and correlation")
with gr.Row():
with gr.Column():
with gr.Row():
fake_predict_btn = gr.Button("Predict structures of all complexes")
with gr.Row():
prediction_dataframe = gr.Dataframe(label="Predicted Structures Data")
with gr.Column():
correlation_ranking_plot = gr.Plot(label="Correlation ranking")
correlation_plot = gr.Plot(label="Correlation with binding affinity")
cols = [
"confidence_score_boltz",
"ptm_boltz",
"iptm_boltz",
# "ligand_iptm_boltz",
# "protein_iptm_boltz",
"complex_plddt_boltz",
"complex_iplddt_boltz",
"complex_pde_boltz",
"complex_ipde_boltz",
"interchain_pae_monomer",
"interface_pae_monomer",
"overall_pae_monomer",
"interface_plddt_monomer",
"average_plddt_monomer",
"ptm_monomer",
"interface_ptm_monomer",
"interchain_pae_multimer",
"interface_pae_multimer",
"overall_pae_multimer",
"interface_plddt_multimer",
"average_plddt_multimer",
"ptm_multimer",
"interface_ptm_multimer"
]
csv_file.change(
fn=lambda file: spr_data_with_scores.drop(columns=cols) if file else None,
inputs=csv_file,
outputs=dataframe
)
fake_predict_btn.click(
fn=lambda x: fake_predict_and_correlate(spr_data_with_scores, cols),
inputs=None,
outputs=[prediction_dataframe, correlation_ranking_plot, correlation_plot]
)
demo.launch()
|