File size: 12,146 Bytes
a3f3d91
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
#!/usr/bin/env python
# -*- coding: utf-8 -*-

import os
import math
import csv
from . import logger

# minimum and maximum surface exposition to be considered
min_surf = 10
max_surf = 55
_name = "agg3D"


class Residue:
    def __init__(self, chain, resi, resn, coords, rsa, score_matrix, ph):
        if chain == ' ':
            self.chain = '-'
        else:
            self.chain = chain
        self.resi = resi
        self.resn = get_one_letter(resn)   # we store it in one-letter code
        self.coords = coords
        self.score_matrix = score_matrix
        self.agg_sup = self.calc_res_agg_fin(rsa=rsa)
        self.agg_fin = 0
        self.rsa = 0
        self.ph = ph
        self.const_ph_scores = {
            "A": 0.66,
            "N": -0.84,
            "C": 1.66,
            "Q": -0.87,
            "G": 0,
            "I": 2.75,
            "L": 1.77,
            "M": 1.30,
            "F": 3.99,
            "P": 1.69,
            "S": -0.99,
            "T": 0.12,
            "W": 3.29,
            "Y": 1.33,
            "V": 1.45
        }

        self.aa_data = {
            'R': {'pKa': 12.5, "R": 0.857546950885663, "PN": 10 ** (-3.66), "PI": 10 ** (-7.38)},
            'D': {'pKa': 3.5, "R": 0.622376926398327, "PN": 10 ** (-3.18), "PI": 10 ** (-8.54)},
            'E': {'pKa': 4.2, 'R': 0.940369170156725, 'PN': 10 ** (-3.79), 'PI': 10 ** (-6.2)},
            'H': {'pKa': 6.6, 'R': 0.812212007706225, 'PN': 10 ** (-4.67), 'PI': 10 ** (-5.97)},
            'K': {'pKa': 10.5, 'R': 0.9093172437, 'PN': 10 ** (-2.19), 'PI': 10 ** (-6.81)},
        }

    def __str__(self):
        return self.chain+self.resn

    def set_agg_fin(self, agg_dis_sum):
        self.agg_fin = self.agg_sup + agg_dis_sum

    def id(self):
        return self.chain+self.resn+self.resi

    def set_rsa(self, rsa):
        self.rsa = rsa
        self.agg_sup = self.calc_res_agg_fin(rsa=rsa)

    def calc_res_agg_fin(self, rsa):
        if rsa < min_surf:
            return 0
        else:
            if rsa > max_surf:
                rsa = max_surf
            if not self.ph:
                return float(self.score_matrix[self.resn]) * 0.0599 * math.exp(0.0521 * rsa)
            else:
                return self.calc_ph_score() * 0.0599 * math.exp(0.0521 * rsa)

    def calc_ph_score(self):
        correction_value = -3.13
        try:
            return self.const_ph_scores[self.resn]
        except KeyError:
            res_data = self.aa_data[self.resn]
            term1, term2 = self.calc_terms(res_data)
            corrected_1 = term1 * res_data['R']
            return (corrected_1 - term2) - correction_value

    def calc_terms(self, data):
        first = math.log10(data['PN'] + (data['PI'] * 10 ** (abs(data['pKa'] - self.ph))))
        second = math.log10(1 + 10 ** (abs(data['pKa'] - self.ph)))
        return first, second
    
    @property
    def score(self):
        return self.agg_fin


class Protein:
    def __init__(self, pdb_code, residues, out_dir, max_dist):
        self.name = pdb_code
        self.residues = residues
        self.out_dir = out_dir
        self.max_dist = max_dist

    def __str__(self):
        return self.name

    def add_residue(self, res):
        self.residues.append(res)

    def change_res_rsa(self, res_number, res_id, rsa):
        if self.residues[res_number].id() == res_id:
            self.residues[res_number].set_rsa(rsa)
        else:
            logger.critical(module_name=_name,
                            msg="Error while parsing freeSasa output. Probably freeSasa failed quietly.")
            logger.critical(module_name=_name,
                            msg="Failed to assign rsa to %s proper id is: %s " %
                                (res_id, self.residues[res_number].id()) +
                            "(ChainID, residue's one letter code, residue's ID)")
            raise logger.AggrescanError("Failed to parse freeSasa output. Qutting.",
                                        module_name=_name)

    def calc_agg_fin(self):
        """Calculate the agg_dis_sum for every Residue in the Protein"""
        dist_correction = -2.56 / self.max_dist
        for central in self.residues:
            agg_dis_sum = 0
            if not central.agg_sup == 0:
                for peripheric in self.residues:
                    dist = get_distance(central.coords, peripheric.coords)
                    if dist < self.max_dist and not dist == 0:
                        agg_dis_sum += peripheric.agg_sup * 1.2915 * math.exp(dist_correction*dist)
            central.set_agg_fin(agg_dis_sum)

    def short_summary(self):
        """Return a short summarized output and identify it with a leading #"""
        total_sum = 0
        maximum = 0
        minimum = 0
        pos_auc = 0
        neg_auc = 0
        prev_score = 0
        res_number = len(self.residues)
        for res in self.residues:
            total_sum += res.agg_fin
            if res.agg_fin > maximum:
                maximum = res.agg_fin
            if res.agg_fin < minimum:
                minimum = res.agg_fin
            if res.agg_fin != 0:
                if prev_score != 0:
                    auc = (res.agg_fin + prev_score)/2
                    if auc > 0:
                        pos_auc += abs(auc)
                    else:
                        neg_auc += abs(auc)
                prev_score = res.agg_fin
        return '#' + self.name + " " + ' '.join(str("%.4f" % round(val, 4))
                                                for val in (total_sum,
                                                total_sum/res_number,
                                                maximum,
                                                minimum,
                                                pos_auc))

    def long_output(self):
        """Return the complete output and identify it with a leading //"""
        output = ""
        for res in self.residues:
            output += '//' + " ".join((res.chain, res.resi, res.resn)) + " %.4f\n" % round(res.agg_fin, 4)
        return output

    def out_csv(self):
        """Save the complete output in a csv file"""
        csv_file = os.path.join(self.out_dir, "A3D.csv")
        c = csv.writer(open(csv_file, "w"))
        if os.stat(csv_file).st_size == 0:
            c.writerow(["protein", "chain", "residue", "residue_name", "score"])
        for res in self.residues:
            c.writerow([self.name.split("/")[-1], res.chain, res.resi, res.resn, "%.4f" % round(res.agg_fin, 4)])

    def get_residues(self):
        return self.residues


def get_one_letter(raw):
    """Return the one letter code for a residue"""
    if len(raw) > 3:
        aa = raw[-3:]
    else:
        aa = raw

    three_letters = aa.capitalize()

    conversion = {"Ala": "A", "Arg": "R", "Asn": "N", "Asp": "D", "Cys": "C",
                  "Glu": "E", "Gln": "Q", "Gly": "G", "His": "H", "Ile": "I",
                  "Leu": "L", "Lys": "K", "Met": "M", "Phe": "F", "Pro": "P",
                  "Ser": "S", "Thr": "T", "Trp": "W", "Tyr": "Y", "Val": "V"}
    try:
        one_letter = conversion[three_letters]
    except KeyError:
        logger.warning(module_name=_name,
                       msg='Could not recognize the following residue symbol: "%s"' % raw)
        one_letter = None
    return one_letter


def get_distance(a, b):
    """Return the distance between two cartesian tri dimensional points"""
    return math.sqrt((a[0] - b[0])**2 +
                     (a[1] - b[1])**2 +
                     (a[2] - b[2])**2)


def parse_matrix(filename=''):
    """Parse the matrix input into a dictionary"""
    with open(filename, 'r') as fh:
        matdict = {}
        for line in fh.readlines():
            if not line == '\n':
                pair = line.strip().split(" ")
                matdict[pair[0]] = pair[1]

    return matdict


def parse_naccess(pdb_code, work_dir, score_matrix, max_dist, ph):
    """Parse the output of naccess into an object of class Protein"""
    with open(os.path.join(work_dir,pdb_code) + ".rsa", "r") as fh:
        rsa_dict = {line[3:8].strip() +  # resn
                    line[8] +   # chain
                    line[9:16].strip():  # resi
                    float(line[22:28].strip())  # rsa
                    for line in fh.readlines()
                    if line.startswith('RES')}

    my_protein = Protein(pdb_code=pdb_code, residues=[], out_dir=work_dir, max_dist=max_dist)
    center_atom = 'CA'  # atom to be considered the center of the residue

    with open(os.path.join(work_dir,pdb_code) + '.asa', 'r') as fh:
        for line in fh.readlines():
            # use data only from alpha carbons
            if line[12:16].strip() == center_atom:
                # extract the data according to the characteristics of the pdb format
                my_chain = line[21]
                my_resi = line[22:29].strip()
                my_resn = line[17:20].strip()
                x = float(line[30:38].strip())
                y = float(line[38:46].strip())
                z = float(line[46:54].strip())
                res_id = my_resn + my_chain + my_resi
                my_rsa = rsa_dict[res_id]
                my_protein.add_residue(Residue(chain=my_chain,
                                               resi=my_resi,
                                               resn=my_resn,
                                               coords=(x, y, z),
                                               rsa=my_rsa,
                                               score_matrix=score_matrix,
                                               ph=ph))
    return my_protein


def parse_freesasa(pdb_code, work_dir, filename, score_matrix, max_dist, ph):
    my_protein = Protein(pdb_code=pdb_code, residues=[], out_dir=work_dir, max_dist=max_dist)
    residue_count = 0
    central_atom = 'CA'   # atom to be considered the center of the residue
    with open(os.path.join(work_dir, filename), 'r') as f:
        for line in f:
            if line.startswith("ATOM "):  # this is the same as naccess asa file
                if line[12:16].strip() == central_atom:
                    # extract the data according to the characteristics of the pdb format
                    my_chain = line[21]
                    my_resi = line[22:29].strip()
                    my_resn = line[17:20].strip()
                    x = float(line[30:38].strip())
                    y = float(line[38:46].strip())
                    z = float(line[46:54].strip())
                    my_protein.add_residue(Residue(chain=my_chain,
                                                   resi=my_resi,
                                                   resn=my_resn,
                                                   coords=(x, y, z),
                                                   rsa=0,
                                                   score_matrix=score_matrix,
                                                   ph=ph))
            elif line.startswith("RES"):   # equivalent to naccess rsa file
                this_id = line[8] + get_one_letter(line[3:8].strip()) + line[9:16].strip()
                rsa = float(line[22:28].strip())
                my_protein.change_res_rsa(res_number=residue_count, res_id=this_id, rsa=rsa)
                residue_count += 1

    return my_protein


def run(pdb_file='', mat_file='', max_dist='', work_dir='', naccess=False, ph=None):
    score_matrix = parse_matrix(filename=mat_file)
    pdb_code = pdb_file.split(".")[0]
    if naccess:
        my_protein = parse_naccess(pdb_code=pdb_code, work_dir=work_dir,
                                   score_matrix=score_matrix, max_dist=max_dist, ph=ph)
    else:
        my_protein = parse_freesasa(pdb_code=pdb_code, work_dir=work_dir,
                                    filename="sasa.out", score_matrix=score_matrix, max_dist=max_dist, ph=ph)
    my_protein.calc_agg_fin()
    my_protein.out_csv()
    # short_summary = my_protein.short_summary()+"\n"
    # long_summary = my_protein.long_output()
    # return short_summary + long_summary
    return my_protein.residues