File size: 14,573 Bytes
a3f3d91 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 |
#if HAVE_CONFIG_H
# include <config.h>
#endif
#include <stdlib.h>
#include <math.h>
#include <assert.h>
#include "freesasa_internal.h"
#include "nb.h"
#ifndef FREESASA_NB_CHUNK
#define FREESASA_NB_CHUNK 128
#endif
typedef struct cell cell;
struct cell {
cell *nb[17]; //! includes self, only forward neighbors
int *atom; //! indices of the atoms/coordinates in a cell
int n_nb; //! number of neighbors to cell
int n_atoms; //! number of atoms in cell
};
static cell empty_cell = {{NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL,
NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL},
NULL, 0, 0};
//! cell lists, divide space into boxes
typedef struct cell_list {
cell *cell; //! the cells
int n; //! number of cells
int nx, ny, nz; //! number of cells along each axis
double d; //! cell size
double x_max, x_min;
double y_max, y_min;
double z_max, z_min;
} cell_list;
static struct cell_list empty_cell_list = {NULL,0,0,0,0,0,0,0,0,0,0,0};
//! Finds the bounds of the cell list and writes them to the provided cell list
static void
cell_list_bounds(cell_list *c,
const coord_t *coord)
{
const int n = freesasa_coord_n(coord);
double d = c->d;
const double * restrict v = freesasa_coord_i(coord,0);
double x=v[0],X=v[0],y=v[1],Y=v[1],z=v[2],Z=v[2];
for (int i = 1; i < n; ++i) {
v = freesasa_coord_i(coord,i);
x = fmin(v[0],x);
X = fmax(v[0],X);
y = fmin(v[1],y);
Y = fmax(v[1],Y);
z = fmin(v[2],z);
Z = fmax(v[2],Z);
}
c->x_min = x - d/2.;
c->x_max = X + d/2.;
c->y_min = y - d/2.;
c->y_max = Y + d/2.;
c->z_min = z - d/2.;
c->z_max = Z + d/2.;
c->nx = ceil((c->x_max - c->x_min)/d);
c->ny = ceil((c->y_max - c->y_min)/d);
c->nz = ceil((c->z_max - c->z_min)/d);
c->n = c->nx*c->ny*c->nz;
}
static inline int
cell_index(const cell_list *c,
int ix,
int iy,
int iz)
{
assert(ix >= 0 && ix < c->nx);
assert(iy >= 0 && iy < c->ny);
return ix + c->nx*(iy + c->ny*iz);
}
//! Fill the neighbor list for a given cell, only "forward" neighbors considered
static void
fill_nb(cell_list *c,
int ix,
int iy,
int iz)
{
cell *cell = &c->cell[cell_index(c,ix,iy,iz)];
int n = 0;
int xmin = ix > 0 ? ix - 1 : 0;
int xmax = ix < c->nx - 1 ? ix + 1 : ix;
int ymin = iy > 0 ? iy - 1 : 0;
int ymax = iy < c->ny - 1 ? iy + 1 : iy;
int zmin = iz > 0 ? iz - 1 : 0;
int zmax = iz < c->nz - 1 ? iz + 1 : iz;
for (int i = xmin; i <= xmax; ++i) {
for (int j = ymin; j <= ymax; ++j) {
for (int k = zmin; k <= zmax; ++k) {
/* Scalar product between (i-ix,j-iy,k-iz) and (1,1,1) should
be non-negative. Using only forward neighbors means
there's no double counting when comparing cells */
if (i-ix+j-iy+k-iz >= 0) {
cell->nb[n] = &c->cell[cell_index(c,i,j,k)];
++n;
}
}
}
}
cell->n_nb = n;
assert(n > 0);
}
//! find neighbors to all cells
static void
get_nb(cell_list *c)
{
for (int ix = 0; ix < c->nx; ++ix) {
for (int iy = 0; iy < c->ny; ++iy) {
for (int iz = 0; iz < c->nz; ++iz) {
fill_nb(c,ix,iy,iz);
}
}
}
}
//! Get the cell index of a given atom
static int
coord2cell_index(const cell_list *c,
const double * restrict xyz)
{
double d = c->d;
int ix = (int)((xyz[0] - c->x_min)/d);
int iy = (int)((xyz[1] - c->y_min)/d);
int iz = (int)((xyz[2] - c->z_min)/d);
return cell_index(c,ix,iy,iz);
}
/**
Assigns cells to each coordinate. Returns FREESASA_FAIL if realloc
fails, FREESASA_SUCCESS else.
*/
static int
fill_cells(cell_list *c,
const coord_t *coord)
{
for (int i = 0; i < c->n; ++i) {
c->cell[i].n_atoms = 0;
}
for (int i = 0; i < freesasa_coord_n(coord); ++i) {
const double * restrict v = freesasa_coord_i(coord,i);
cell *cell;
int *a;
cell = &c->cell[coord2cell_index(c,v)];
++cell->n_atoms;
a = cell->atom;
cell->atom = realloc(cell->atom,sizeof(int)*cell->n_atoms);
if (!cell->atom) { cell->atom = a; return mem_fail(); }
cell->atom[cell->n_atoms-1] = i;
}
return FREESASA_SUCCESS;
}
//! Frees an object created by cell_list_new().
static void
cell_list_free(cell_list *c)
{
if (c) {
if (c->cell) for (int i = 0; i < c->n; ++i) free(c->cell[i].atom);
free(c->cell);
free(c);
}
}
/**
Creates a cell list with provided cell-size assigning cells to
each of the provided coordinates. The created cell list should be
freed using cell_list_free().
Returns NULL if there are malloc fails.
*/
static cell_list*
cell_list_new(double cell_size,
const coord_t *coord)
{
assert(cell_size > 0);
assert(coord);
cell_list *c = malloc(sizeof(cell_list));
if (!c) {mem_fail(); return NULL;}
*c = empty_cell_list;
c->d = cell_size;
cell_list_bounds(c,coord);
c->cell = malloc(sizeof(cell)*c->n);
if (!c->cell) {
cell_list_free(c);
mem_fail();
return NULL;
}
for (int i = 0; i < c->n; ++i)
c->cell[i] = empty_cell;
if (fill_cells(c,coord)) {
cell_list_free(c);
mem_fail();
return NULL;
}
get_nb(c);
return c;
}
//! assumes max value in a is positive
static double
max_array(const double *a,
int n)
{
double max = 0;
for (int i = 0; i < n; ++i) {
max = fmax(a[i],max);
}
return max;
}
/**
Allocate memory for ::nb_list object. Tries to free everything
and returns NULL if malloc somewhere along the way.
*/
static nb_list*
freesasa_nb_alloc(int n)
{
assert(n > 0);
nb_list *nb = malloc(sizeof(nb_list));
if (!nb) {mem_fail(); return NULL;}
nb->n = n;
// in case the mallocs break, we can clean up in a safer way
nb->nn = NULL;
nb->nb = NULL;
nb->capacity = NULL;
nb->xyd = nb->xd = nb->yd = NULL;
nb->nn = malloc(sizeof(int)*n);
nb->nb = malloc(sizeof(int *)*n);
nb->xyd = malloc(sizeof(double *)*n);
nb->xd = malloc(sizeof(double *)*n);
nb->yd = malloc(sizeof(double *)*n);
nb->capacity = malloc(sizeof(int)*n);
if (!nb->nn || !nb->nb || !nb->xyd ||
!nb->xd || !nb->yd || !nb->capacity) {
free(nb->nn); free(nb->nb); free(nb->xyd);
free(nb->xd); free(nb->yd); free(nb->capacity);
free(nb);
mem_fail();
return NULL;
}
for (int i=0; i < n; ++i) {
nb->nn[i] = 0;
nb->capacity[i] = FREESASA_NB_CHUNK;
// again prepare for a potential cleanup
nb->nb[i] = NULL;
nb->xyd[i] = nb->xd[i] = nb->yd[i] = NULL;
}
for (int i=0; i < n; ++i) {
nb->nb[i] = malloc(sizeof(int)*FREESASA_NB_CHUNK);
nb->xyd[i] = malloc(sizeof(double)*FREESASA_NB_CHUNK);
nb->xd[i] = malloc(sizeof(double)*FREESASA_NB_CHUNK);
nb->yd[i] = malloc(sizeof(double)*FREESASA_NB_CHUNK);
if (!nb->nb[i] || !nb->xyd[i] || !nb->xd[i] || !nb->yd[i]) {
freesasa_nb_free(nb);
mem_fail();
return NULL;
}
}
return nb;
}
void
freesasa_nb_free(nb_list *nb)
{
int n;
if (nb != NULL) {
n = nb->n;
if (nb->nb) for (int i = 0; i < n; ++i) free(nb->nb[i]);
if (nb->xyd) for (int i = 0; i < n; ++i) free(nb->xyd[i]);
if (nb->xd) for (int i = 0; i < n; ++i) free(nb->xd[i]);
if (nb->yd) for (int i = 0; i < n; ++i) free(nb->yd[i]);
free(nb->nb);
free(nb->nn);
free(nb->capacity);
free(nb->xyd);
free(nb->xd);
free(nb->yd);
free(nb);
}
}
/**
Increases sizes of arrays when they cross a threshold. Returns
FREESASA_FAIL if realloc fails, FREESASA_SUCCESS else
*/
static int
chunk_up(nb_list *nb_list,
int i)
{
int nni = nb_list->nn[i];
if (nni > nb_list->capacity[i]) {
int **nbi = &nb_list->nb[i];
int *nbi_b = *nbi;
double **xydi = &nb_list->xyd[i];
double **xdi = &nb_list->xd[i];
double **ydi = &nb_list->yd[i];
double *xydi_b = *xydi, *xdi_b = *xdi, *ydi_b = *ydi;
int new_cap = (nb_list->capacity[i] += FREESASA_NB_CHUNK);
*nbi = realloc(*nbi,sizeof(int)*new_cap);
if (*nbi == NULL) { nb_list->nb[i] = nbi_b; return mem_fail(); }
*xydi = realloc(*xydi,sizeof(double)*new_cap);
if (*xydi == NULL) { nb_list->xyd[i] = xydi_b; return mem_fail(); }
*xdi = realloc(*xdi,sizeof(double)*new_cap);
if (*xdi == NULL) { nb_list->xd[i] = xdi_b; return mem_fail(); }
*ydi = realloc(*ydi,sizeof(double)*new_cap);
if (*ydi == NULL) { nb_list->yd[i] = ydi_b; return mem_fail(); }
}
return FREESASA_SUCCESS;
}
/**
Assumes the coordinates i and j have been determined to be
neighbors and adds them both to the provided nb lists,
symmetrically.
Returns FREESASA_FAIL if can't allocate memory. FREESASA_SUCCESS
else.
*/
static int
nb_add_pair(nb_list *nb_list,
int i,
int j,
double dx,
double dy)
{
assert(i != j);
int ** nb;
int * nn = nb_list->nn;
int nni, nnj;
double ** xyd;
double ** xd;
double ** yd;
double d;
nni = nn[i]++;
nnj = nn[j]++;
if (chunk_up(nb_list,i)) return mem_fail();
if (chunk_up(nb_list,j)) return mem_fail();
nb = nb_list->nb;
xyd = nb_list->xyd;
xd = nb_list->xd;
yd = nb_list->yd;
nb[i][nni] = j;
nb[j][nnj] = i;
d = sqrt(dx*dx+dy*dy);
xyd[i][nni] = d;
xyd[j][nnj] = d;
xd[i][nni] = dx;
xd[j][nnj] = -dx;
yd[i][nni] = dy;
yd[j][nnj] = -dy;
return FREESASA_SUCCESS;
}
/**
Fills the nb list for all contacts between coordinates
belonging to the cells ci and cj. Handles the case ci == cj
correctly.
*/
static int
nb_calc_cell_pair(nb_list *nb_list,
const coord_t *coord,
const double *radii,
const cell *ci,
const cell *cj)
{
const double * restrict v = freesasa_coord_all(coord);
double ri, rj, xi, yi, zi, xj, yj, zj,
dx, dy, dz, cut2;
int i,j,ia,ja;
for (i = 0; i < ci->n_atoms; ++i) {
ia = ci->atom[i];
ri = radii[ia];
xi = v[ia*3]; yi = v[ia*3+1]; zi = v[ia*3+2];
if (ci == cj) j = i+1;
else j = 0;
// the following loop is performance critical
for (; j < cj->n_atoms; ++j) {
ja = cj->atom[j];
rj = radii[ja];
xj = v[ja*3]; yj = v[ja*3+1]; zj = v[ja*3+2];
cut2 = (ri+rj)*(ri+rj);
dx = xj-xi; dy = yj-yi; dz = zj-zi;
if (dx*dx + dy*dy + dz*dz < cut2) {
if (nb_add_pair(nb_list,ia,ja,dx,dy))
return mem_fail();
}
}
}
return FREESASA_SUCCESS;
}
/**
Iterates through the cells and records all contacts in the
provided nb list
*/
static int
nb_fill_list(nb_list *nb_list,
cell_list *c,
const coord_t *coord,
const double *radii)
{
int nc = c->n;
for (int ic = 0; ic < nc; ++ic) {
const cell *ci = &c->cell[ic];
for (int jc = 0; jc < ci->n_nb; ++jc) {
const cell *cj = ci->nb[jc];
if (nb_calc_cell_pair(nb_list,coord,radii,ci,cj))
return mem_fail();
}
}
return FREESASA_SUCCESS;
}
nb_list*
freesasa_nb_new(const coord_t *coord,
const double *radii)
{
if (coord == NULL || radii == NULL) return NULL;
double cell_size;
cell_list *c;
int n = freesasa_coord_n(coord);
nb_list *nb = freesasa_nb_alloc(n);
if (!nb) {
mem_fail();
return NULL;
}
cell_size = 2*max_array(radii,n);
assert(cell_size > 0);
c = cell_list_new(cell_size,coord);
if (c == NULL ||
nb_fill_list(nb,c,coord,radii)) {
mem_fail();
freesasa_nb_free(nb);
nb = NULL;
}
// the cell lists are only a tool to generate the neighbor lists
cell_list_free(c);
return nb;
}
int
freesasa_nb_contact(const nb_list *nb,
int i,
int j)
{
assert(nb != NULL);
assert(i < nb->n && i >= 0);
assert(j < nb->n && j >= 0);
for (int k = 0; k < nb->nn[i]; ++k) {
if (nb->nb[i][k] == j) return 1;
}
return 0;
}
#if USE_CHECK
#include <math.h>
#include <check.h>
START_TEST (test_cell) {
const int n_atoms = 6;
static const double v[] = {0,0,0, 1,1,1, -1,1,-1, 2,0,-2, 2,2,0, -5,5,5};
static const double r[] = {4,2,2,2,2,2};
double r_max;
cell_list *c;
coord_t *coord = freesasa_coord_new();
freesasa_coord_append(coord,v,n_atoms);
r_max = max_array(r,n_atoms);
ck_assert(fabs(r_max-4) < 1e-10);
c = cell_list_new(r_max,coord);
ck_assert(c != NULL);
ck_assert(c->cell != NULL);
ck_assert(fabs(c->d - r_max) < 1e-10);
// check bounds
ck_assert(c->x_min < -5);
ck_assert(c->x_max > 2);
ck_assert(c->y_min < 0);
ck_assert(c->y_max > 5);
ck_assert(c->z_min < -2);
ck_assert(c->z_max > 5);
// check number of cells
ck_assert(c->nx*c->d >= 7);
ck_assert(c->nx <= ceil(7/r_max)+1);
ck_assert(c->ny*c->d >= 5);
ck_assert(c->ny <= ceil(5/r_max)+1);
ck_assert(c->nz*c->d >= 7);
ck_assert(c->nz <= ceil(7/r_max)+1);
ck_assert_int_eq(c->n, c->nx*c->ny*c->nz);
// check the individual cells
int na = 0;
ck_assert_int_eq(c->cell[0].n_nb,8);
ck_assert_int_eq(c->cell[c->n-1].n_nb,1);
for (int i = 0; i < c->n; ++i) {
cell ci = c->cell[i];
ck_assert(ci.n_atoms >= 0);
if (ci.n_atoms > 0) ck_assert(ci.atom != NULL);
ck_assert_int_ge(ci.n_nb, 1);
ck_assert_int_le(ci.n_nb, 17);
na += ci.n_atoms;
}
ck_assert_int_eq(na,n_atoms);
cell_list_free(c);
freesasa_coord_free(coord);
}
END_TEST
TCase *
test_nb_static()
{
TCase *tc = tcase_create("nb.c static");
tcase_add_test(tc, test_cell);
return tc;
}
#endif //USE_CHECK
|