File size: 9,696 Bytes
a3f3d91
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
# -*- coding: utf-8 -*-

import os
import errno
import shutil
from . import logger
from os.path import join, abspath
from subprocess import Popen, PIPE
from glob import glob
from pkg_resources import resource_filename
import json
import tarfile
from .postProcessing import prepare_output
from .analysis import aggregation_analysis as analyze
from collections import OrderedDict

_name = "CABS"


def run_cabs(config, pdb_input="input.pdb"):
    """Takes an Aggrescan3D Job config dictionary and should never change it"""
    real_work_dir = config["work_dir"]
    os.chdir(real_work_dir)
    real_cabs_dir = os.path.join(real_work_dir, "CABS_sim")
    real_models_dir = os.path.join(real_cabs_dir, "output_pdbs")
    try:
        _makedir(real_cabs_dir)
        _makedir("models")
        _makedir("stats")
        shutil.copyfile(pdb_input, os.path.join(real_cabs_dir,
                                                pdb_input))
    except OSError:
        raise logger.CabsError("Failed to prepare CABS directory at: %s" % real_cabs_dir)

    os.chdir(real_cabs_dir)
    logger.info(module_name=_name,
                msg="Running CABS flex simulation")
    cabs_cmd = _prepare_command(pdb_input=pdb_input, cabs_dir=config["cabs_dir"],
                                cabs_config=config["cabs_config"], n_models=config["n_models"])
    logger.debug(module_name=_name,
                 msg="CABS ran with: %s" % " ".join(cabs_cmd))
    out, err = Popen(cabs_cmd, stdout=PIPE, stderr=PIPE).communicate()
    if err:
        with open(join(real_work_dir, "CABSerror"), 'w') as f:
            f.write(err)
        _cleanup_files(work_dir=real_work_dir, cabs_dir=real_cabs_dir, clean=False)
        raise logger.CabsError("Please see CABSerror file within your work directory for more details",
                               err_file="CABSerror")
    try:
        _check_output(models_dir=real_models_dir, n_models=config["n_models"])
    except logger.CabsError:
        shutil.move(join(real_cabs_dir, "CABS.log"), join(real_work_dir, "CABS.log"))
        _cleanup_files(work_dir=real_work_dir, cabs_dir=real_cabs_dir, clean=False)
        raise logger.CabsError("Please see CABS.log file within your work directory for more details",
                               err_file="CABS.log")

    shutil.copyfile(pdb_input, join("output_pdbs", pdb_input))
    os.chdir("output_pdbs")
    models = glob("model*.pdb")
    top = ""
    max_avg = -100
    averages = {}
    all_models_data = []
    for model in models:
        model_path = abspath(model)
        analyze(config=config, target=model_path, working_dir=real_models_dir, agg_work_dir=real_work_dir)
        data, stats = prepare_output(work_dir=real_models_dir, final=False,
                                     model_name=model.split(".")[0], scores_to_pdb=True, get_data=True)
        all_models_data.append(data["All"])
        current_avg = stats["All"]["avg_value"]
        averages[model] = current_avg
        if current_avg > max_avg:
            max_avg = stats["All"]["avg_value"]
            top = model
        shutil.move("A3D.csv", join(real_work_dir, "stats", model.split(".")[0] + ".csv"))
        shutil.move(model, join(real_work_dir, "models", model))
    analyze(config=config, target=pdb_input, working_dir=real_models_dir, agg_work_dir=real_work_dir)
    stats = prepare_output(work_dir=real_models_dir, final=False,
                           model_name=pdb_input.split(".")[0], scores_to_pdb=True, get_data=False)
    current_avg = stats["All"]["avg_value"]
    averages[pdb_input] = current_avg
    if current_avg > max_avg:
        top = pdb_input

    shutil.copyfile(pdb_input, "CABS_average.pdb")  # Create a "fake" average model from input
    with open("A3D.csv", 'r') as f:
        a3d_file_backup = f.readlines()

    shutil.move("A3D.csv", join(real_work_dir, "stats", pdb_input.split(".")[0] + ".csv"))
    shutil.move(pdb_input, join(real_work_dir, "models", pdb_input))    # Move the actual input out

    _create_avg_A3D(all_models_data, a3d_file_backup, real_models_dir)   # Create a "fake" A3D file that has averages of all CABS models for each residue
    stats = prepare_output(work_dir='', final=False,
                           model_name="CABS_average", scores_to_pdb=True, get_data=False)
    shutil.move("CABS_average.pdb", join(real_work_dir, "models", "CABS_average.pdb"))
    shutil.move("A3D.csv", join(real_work_dir, "stats", "CABS_average" + ".csv"))
    averages["CABS_average.pdb"] = stats["All"]["avg_value"]
    with open('averages', 'w') as avg:
        json.dump(_sort_dict(my_dict=averages), avg)

    os.chdir(real_work_dir)
    _cleanup_files(work_dir=real_work_dir, cabs_dir=real_cabs_dir, input_pdb=pdb_input, top=top, clean=True)
    superimpose(first_model="input.pdb", second_model="folded.pdb")


def _create_avg_A3D(data, a3d_content, work_dir):
    """Assuming the order is the same in data and a3d_content this should be the case as data is read from an A3D file"""
    new_data = [0 for i in range(len(data[0]))]
    for model in data:
        for res_index in range(len(model)):
            new_data[res_index] += model[res_index][1]
    new_data = [i/len(data) for i in new_data]
    with open(join(work_dir, "A3D.csv"), "w") as f:
        counter = 0
        first = True
        suma = 0
        for line in a3d_content:
            if first is True:
                f.write(line)
                first = False
            else:
                parsed = line.split(",")
                parsed[-1] = "%.4f\r\n" % new_data[counter]
                newline = ",".join(parsed)
                suma += new_data[counter]
                f.write(newline)
                counter += 1


def superimpose(first_model, second_model):
    try:
        pymol_cmd = ["pymol", "-cq", resource_filename("aggrescan", join("data", "superimpose.pml")), "--", first_model, second_model]
        out, err = Popen(pymol_cmd, stdout=PIPE, stderr=PIPE).communicate()
        if err:
            logger.warning(module_name="Pymol",
                           msg="Pymol reports an error: %s" % err)
        shutil.move("superimposed.png", "CABSflex_supe.png")
    except OSError:
        logger.warning(module_name=_name,
                       msg="Pymol failed to launch (most likely not present on the system)."
                           "Couldn't create a superimposed picture of CABS input and output ")
    except (shutil.Error, IOError):
        logger.critical(module_name="Pymol",
                        msg="Pymol failed to create a superimposed image for input and "
                            "most aggregation prone CABS model")


def _prepare_command(pdb_input="input.pdb", cabs_dir=".", cabs_config='', n_models=12):
    """Prepare CABS settings according to user input"""
    cabs_cmd = []
    if cabs_dir:
        cabs_cmd.extend(["python", cabs_dir, "flex"])
    else:
        cabs_cmd.append("CABSflex")
    if cabs_config:
        cabs_cmd.extend(["-c", cabs_config])
    else:
        cabs_cmd.extend(["--image-file-format", "png", "-v", "4"])
    cabs_cmd.extend(["--input", pdb_input, "--clustering-medoids", str(n_models), "--aa-rebuild", "--log"])
    return cabs_cmd


def _cleanup_files(work_dir="", cabs_dir="", input_pdb="", top="", clean=True):
    """If clean some files will be saved, else only remove all created files"""
    if clean:
        shutil.move(join(cabs_dir, "plots", "RMSF_seq.png"), join(work_dir, "CABSflex_rmsf.png"))
        shutil.move(join(cabs_dir, "plots", "RMSF.csv"), join(work_dir, "CABSflex_rmsf.csv"))
        shutil.copyfile(join(work_dir, "models", top.strip()), join(work_dir, "folded.pdb"))
        shutil.copyfile(join(cabs_dir, "output_pdbs", "averages"), "averages")

    if logger.get_log_level() >= 2 and clean:
        logger.log_file(module_name="CABS",
                        msg="Saving top CABS models as %s" % "models.tar.gz")
        with tarfile.open(join(work_dir, "models.tar.gz"), "w:gz") as tar:
            tar.add(join(work_dir, "models"), arcname=os.path.sep)
        logger.log_file(module_name="CABS",
                        msg="Saving Aggrescan3D statistics for all CABS models as %s" % "stats.tar.gz")
        with tarfile.open(join(work_dir, "stats.tar.gz"), "w:gz") as tar:
            tar.add(join(work_dir, "stats"), arcname=os.path.sep)

    shutil.rmtree(join(work_dir, "stats"), ignore_errors=True)
    shutil.rmtree(join(work_dir, "models"), ignore_errors=True)
    _del_cabs_dir(cabs_dir=cabs_dir)


def _del_cabs_dir(cabs_dir="CABS_sim"):
    shutil.rmtree(cabs_dir, ignore_errors=True)


def _check_output(models_dir, n_models):
    """Check if all the required files were created"""
    _file_list = ["CABS.log"]
    _file_list.extend([join(models_dir, "model_%s.pdb" % str(i)) for i in range(n_models)])
    _file_list.append(join("plots", "RMSF_seq*"))
    _file_list.append(join("plots", "RMSF*"))
    for filename in _file_list:
        if not glob(filename):
            logger.critical(module_name="CABS",
                            msg="File %s which CABS should have generated was not found." % filename)
            raise logger.CabsError


def _sort_dict(my_dict):
    """Return a reverse-sorted by value, OrderedDict of a regular dictionary with number values"""
    new_dict = OrderedDict()
    for key, value in sorted(iter(my_dict.items()), key=lambda k_v: (k_v[1], k_v[0]), reverse=True):
        new_dict[key] = value
    return new_dict


def _makedir(path):
    """Ignore error if path exists"""
    try:
        os.makedirs(path)
    except OSError as e:
        if e.errno == errno.EEXIST and os.path.isdir(path):
            pass
        else:
            raise