File size: 5,936 Bytes
44459bb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
01fba1c
44459bb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
01fba1c
44459bb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
01fba1c
44459bb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
"""API simple prediction call wrappers."""

import logging
import warnings
from pathlib import Path

import requests
import typer
from folding_studio_data_models import AF2Parameters, OpenFoldParameters
from folding_studio_data_models.request.folding import FoldingModel

from folding_studio.config import API_URL, REQUEST_TIMEOUT
from folding_studio.utils.data_model import (
    PredictRequestCustomFiles,
    PredictRequestParams,
)
from folding_studio.utils.file_helpers import partition_template_pdb_from_file
from folding_studio.utils.headers import get_auth_headers
from folding_studio.utils.project_validation import define_project_code_or_raise


def single_job_prediction(
    fasta_file: Path,
    parameters: AF2Parameters | OpenFoldParameters | None = None,
    project_code: str | None = None,
    api_key: str | None = None,
    *,
    ignore_cache: bool = False,
    **kwargs,
) -> dict:
    """Make a single job prediction from folding parameters and a FASTA file.

    This is a helper function to be called in users scripts.

    Args:
        fasta_file (Path): Input FASTA file
        parameters (AF2Parameters | OpenFoldParameters | None, optional): Job parameters.
            For backward compatibility, can be aliased with `af2_parameters`. Defaults to None.
        project_code (str | None, optional): Project code under which the jobs are billed.
            If None, value is attempted to be read from environment. Defaults to None.
        ignore_cache (bool, optional): Force the job submission or not. Defaults to False.

    Raises:
        ValueError: _description_
        typer.Exit: If an error occurs during the API call.

    Returns:
        dict: API response.
    """

    old_parameters = kwargs.get("af2_parameters")
    if parameters is None:
        if old_parameters is None:
            msg = "Argument `parameters` must be specified if deprecated alias `af2_parameters` is not. "
            raise ValueError(msg)
        else:
            warnings.warn(
                "Argument 'af2_parameters' is deprecated and will be removed in future release; use 'parameters' instead.",
                DeprecationWarning,
                stacklevel=2,
            )
            parameters = old_parameters
    elif old_parameters is not None:
        raise ValueError("Use either 'parameters' or 'af2_parameters', not both.")

    project_code = define_project_code_or_raise(project_code=project_code)

    custom_files = PredictRequestCustomFiles(
        templates=parameters.custom_templates,
        msas=parameters.custom_msas,
        initial_guess_files=[parameters.initial_guess_file]
        if parameters.initial_guess_file
        else None,
        templates_masks_files=[parameters.templates_masks_file]
        if parameters.templates_masks_file
        else None,
    )
    _ = custom_files.upload(api_key=api_key)

    params = parameters.model_dump(mode="json")
    pdb_ids, _ = partition_template_pdb_from_file(
        custom_templates=parameters.custom_templates
    )

    folding_model = (
        FoldingModel.OPENFOLD
        if isinstance(parameters, OpenFoldParameters)
        else FoldingModel.AF2
    )

    params.update(
        {
            "folding_model": folding_model.value,
            "custom_msa_files": custom_files.msas,
            "custom_template_ids": list(pdb_ids),
            "custom_template_files": custom_files.templates,
            "initial_guess_file": custom_files.initial_guess_files[0]
            if custom_files.initial_guess_files
            else None,
            "templates_masks_file": custom_files.templates_masks_files[0]
            if custom_files.templates_masks_files
            else None,
            "ignore_cache": ignore_cache,
        }
    )

    url = API_URL + "predict"
    response = requests.post(
        url,
        data=params,
        headers=get_auth_headers(api_key),
        files=[("fasta_file", fasta_file.open("rb"))],
        params={"project_code": project_code},
        timeout=REQUEST_TIMEOUT,
    )
    response.raise_for_status()

    logging.info("Single job successfully submitted.")
    response_json = response.json()
    return response_json


def simple_prediction(
    file: Path,
    folding_model: FoldingModel,
    params: PredictRequestParams,
    custom_files: PredictRequestCustomFiles,
    project_code: str | None = None,
) -> dict:
    """Make a simple prediction from a file.

    Args:
        file (Path): Data source file path.
        params (PredictRequestParams): API request parameters.
        custom_files (PredictRequestCustomFiles): API request custom files.
        project_code (str|None): Project code under which the jobs are billed.

    Raises:
        typer.Exit: If an error occurs during the API call.
    """
    project_code = define_project_code_or_raise(project_code=project_code)

    url = API_URL + "predict"

    _ = custom_files.upload()

    params = params.model_dump(mode="json")
    params.update(
        {
            "folding_model": folding_model.value,
            "custom_msa_files": custom_files.msas,
            "custom_template_files": custom_files.templates,
            "initial_guess_file": custom_files.initial_guess_files[0]
            if custom_files.initial_guess_files
            else None,
            "templates_masks_file": custom_files.templates_masks_files[0]
            if custom_files.templates_masks_files
            else None,
        }
    )
    response = requests.post(
        url,
        data=params,
        headers=get_auth_headers(),
        files=[("fasta_file", file.open("rb"))],
        params={"project_code": project_code},
        timeout=REQUEST_TIMEOUT,
    )

    if not response.ok:
        print(f"An error occurred: {response.content.decode()}")
        raise typer.Exit(code=1)

    print("Single job successfully submitted.")
    response_json = response.json()
    return response_json