File size: 7,889 Bytes
44459bb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
"""Boltz-1 query to prediction endpoint."""

from __future__ import annotations

from io import StringIO
from pathlib import Path
from typing import Any

import yaml
from folding_studio_data_models import FoldingModel
from pydantic import BaseModel

from folding_studio.commands.utils import process_uploaded_msas
from folding_studio.query import Query
from folding_studio.utils.fasta import validate_fasta
from folding_studio.utils.headers import get_auth_headers
from folding_studio.utils.path_helpers import validate_path


class BoltzParameters(BaseModel):
    """Boltz inference parameters."""

    seed: int = 0
    recycling_steps: int = 3
    sampling_steps: int = 200
    diffusion_samples: int = 1
    step_scale: float = 1.638
    msa_pairing_strategy: str = "greedy"
    write_full_pae: bool = False
    write_full_pde: bool = False
    use_msa_server: bool = True
    custom_msa_paths: dict[str, str] | None = None


class BoltzQuery(Query):
    """Boltz1 model query."""

    MODEL = FoldingModel.BOLTZ

    def __init__(
        self,
        fasta_dict: dict[str, str],
        yaml_dict: dict[str, str],
        query_name: str,
        parameters: BoltzParameters = BoltzParameters(),
    ):
        self.fasta_dict = fasta_dict
        self.yaml_dict = yaml_dict
        self.query_name = query_name
        self._parameters = parameters

    @staticmethod
    def _process_file(file_path: Path) -> tuple[dict[str, str], dict[str, str]]:
        """Processes a single file and extracts its contents.

        Args:
            file_path (Path): Path to the file.

        Returns:
            tuple[dict[str, str], dict[str, str]]: A tuple containing FASTA and YAML dictionaries.

        Raises:
            ValueError: If the file format is unsupported.
        """
        fasta_dict = {}
        yaml_dict = {}
        if file_path.suffix in (".fasta", ".fa"):
            fasta_content = validate_fasta(file_path, str_output=True)
            fasta_dict = {file_path.stem: fasta_content}
        elif file_path.suffix in (".yaml", ".yml"):
            with file_path.open("r", encoding="utf-8") as f:
                yaml_dict = {file_path.stem: yaml.safe_load(f)}
        else:
            raise ValueError(f"Unsupported format: {file_path.suffix}")
        return fasta_dict, yaml_dict

    @classmethod
    def from_protein_sequence(
        cls: BoltzQuery, sequence: str, query_name: str | None = None, **kwargs
    ) -> BoltzQuery:
        """Initialize a BoltzQuery from a str protein sequence.

        Args:
            sequence (str): The protein sequence in string format.
            query_name (str | None, optional): User-defined query name. Defaults to None.
            **kwargs: Additional parameters for the query.

        Returns:
            BoltzQuery
        """
        record = validate_fasta(StringIO(sequence))

        custom_msa_paths = kwargs.pop("custom_msa_paths", None)
        if custom_msa_paths:
            kwargs["custom_msa_paths"] = cls._upload_custom_msa_files(custom_msa_paths)

        query_name = (
            query_name
            if query_name is not None
            else record.description.split("|", maxsplit=1)[0]  # first tag
        )
        return cls(
            fasta_files={query_name: sequence},
            query_name=query_name,
            parameters=BoltzParameters(**kwargs),
        )

    @classmethod
    def from_file(
        cls: BoltzQuery, path: str | Path, query_name: str | None = None, **kwargs
    ) -> BoltzQuery:
        """Initialize a BoltzQuery instance from a file.

        Supported file format are:
            - FASTA
            - YAML

        Args:
            path (str | Path): Path to the file.
            **kwargs: Additional parameters for the query.

        Returns:
            BoltzQuery: An instance of BoltzQuery.
        """
        path = validate_path(
            path, is_file=True, file_suffix=(".fasta", ".fa", ".yaml", ".yml")
        )
        fasta_dict, yaml_dict = cls._process_file(path)
        query_name = query_name or path.stem
        custom_msa_paths = kwargs.pop("custom_msa_paths", None)
        if custom_msa_paths:
            kwargs["custom_msa_paths"] = cls._upload_custom_msa_files(custom_msa_paths)
        return cls(
            fasta_dict=fasta_dict,
            yaml_dict=yaml_dict,
            query_name=query_name,
            parameters=BoltzParameters(**kwargs),
        )

    @classmethod
    def from_directory(
        cls: BoltzQuery, path: str | Path, query_name: str | None = None, **kwargs: Any
    ) -> BoltzQuery:
        """Initialize a BoltzQuery instance from a directory.

        Supported file format in directory are:
            - FASTA
            - YAML

        Args:
            directory_path (Path): Path to the directory.
            **kwargs: Additional parameters for the query.

        Returns:
            BoltzQuery: An instance of BoltzQuery.
        """
        custom_msa_paths = kwargs.pop("custom_msa_paths", None)
        if custom_msa_paths:
            kwargs["custom_msa_paths"] = cls._upload_custom_msa_files(custom_msa_paths)
        path = validate_path(path, is_dir=True)
        fasta_dict = {}
        yaml_dict = {}
        for file in path.iterdir():
            file_fasta_dict, file_yaml_dict = cls._process_file(file)
            fasta_dict.update(file_fasta_dict)
            yaml_dict.update(file_yaml_dict)

        if not (fasta_dict or yaml_dict):
            raise ValueError(f"No FASTA or YAML files found in directory '{path}'.")

        query_name = query_name or path.name
        return cls(
            fasta_dict=fasta_dict,
            yaml_dict=yaml_dict,
            query_name=query_name,
            parameters=BoltzParameters(**kwargs),
        )

    @property
    def payload(self) -> dict[str, Any]:
        """Payload to send to the prediction API endpoint."""
        return {
            "fasta_files": self.fasta_dict,
            "yaml_files": self.yaml_dict,
            "parameters": self.parameters.model_dump(mode="json"),
        }

    @property
    def parameters(self) -> BoltzParameters:
        """Parameters of the query."""
        return self._parameters

    @staticmethod
    def _upload_custom_msa_files(
        source: str, headers: str | None = None
    ) -> dict[str, str]:
        """Reads MSA files from a file or directory and uploads them to GCS.

        Args:
            source (str): Path to an .a3m or .csv file, or a directory containing such files.
            headers (str | None, optional): GCP authentication headers. Defaults to None.

        Raises:
            ValueError: If the file has an unsupported extension.
            ValueError: If a directory contains no .a3m or .csv files.

        Returns:
            dict[str, str]: A mapping of uploaded file names to their GCS URLs.
        """
        headers = headers or get_auth_headers()
        source_path = validate_path(source)
        valid_extensions = {".a3m", ".csv"}  # Allow both a3m and csv files

        # Process if source is a file
        if source_path.is_file():
            if source_path.suffix not in valid_extensions:
                raise ValueError(
                    f"Invalid file type: {source_path.suffix}. Expected one of {valid_extensions}."
                )
            return process_uploaded_msas([source_path], headers)

        # Process if source is a directory
        elif source_path.is_dir():
            valid_files = [
                file
                for file in source_path.iterdir()
                if file.suffix in valid_extensions
            ]
            if not valid_files:
                raise ValueError(
                    f"Directory '{source}' contains no valid files with extensions {valid_extensions}."
                )
            return process_uploaded_msas(valid_files, headers)