File size: 8,618 Bytes
44459bb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
"""Query module for Chai prediction endpoint."""

from __future__ import annotations

import shutil
import tempfile
from io import StringIO
from itertools import chain
from pathlib import Path
from typing import Any

from folding_studio_data_models import FoldingModel
from pydantic import BaseModel, field_validator

from folding_studio.commands.utils import (
    a3m_to_aligned_pqt,
    process_uploaded_msas,
)
from folding_studio.query import Query
from folding_studio.utils.fasta import validate_fasta
from folding_studio.utils.headers import get_auth_headers
from folding_studio.utils.path_helpers import validate_path


class ChaiParameters(BaseModel):
    """Chai1 inference parameters."""

    seed: int = 0
    num_trunk_recycles: int = 3
    num_diffn_timesteps: int = 200
    recycle_msa_subsample: int = 0
    num_trunk_samples: int = 1
    restraints: str | None = None
    use_msa_server: bool = False
    use_templates_server: bool = False
    custom_msa_paths: dict[str, str] | None = None

    @field_validator("restraints", mode="before")
    def read_restraints(
        cls: ChaiParameters, restraints: str | Path | None
    ) -> str | None:
        """Reads restraints from a CSV file and returns its content as a string."""
        if restraints is None:
            return
        path = validate_path(restraints, is_file=True, file_suffix=(".csv"))
        with path.open(newline="", encoding="utf-8") as csvfile:
            return csvfile.read().strip()


class ChaiQuery(Query):
    """Chai1 model query."""

    MODEL = FoldingModel.CHAI

    def __init__(
        self,
        fasta_files: dict[str, str],
        query_name: str,
        parameters: ChaiParameters = ChaiParameters(),
    ):
        """Initializes a ChaiQuery instance."""
        if not fasta_files:
            raise ValueError("FASTA files dictionary cannot be empty.")

        self.fasta_files = fasta_files
        self.query_name = query_name
        self._parameters = parameters

    @classmethod
    def from_protein_sequence(
        cls: ChaiQuery, sequence: str, query_name: str | None = None, **kwargs
    ) -> ChaiQuery:
        """Initialize a ChaiQuery instance from a str protein sequence.

        Args:
            sequence (str): Protein amino-acid sequence
            query_name (str | None, optional): User-defined query name. Defaults to None.

        Raises:
            NotAMonomer: If the sequence is not a monomer complex.

        Returns:
            ChaiQuery
        """
        record = validate_fasta(StringIO(sequence))

        custom_msa_paths = kwargs.pop("custom_msa_paths", None)
        if custom_msa_paths:
            kwargs["custom_msa_paths"] = cls._upload_custom_msa_files(custom_msa_paths)

        query_name = (
            query_name
            if query_name is not None
            else record.description.split("|", maxsplit=1)[0]  # first tag
        )
        return cls(
            fasta_files={query_name: sequence},
            query_name=query_name,
            parameters=ChaiParameters(**kwargs),
        )

    @classmethod
    def from_file(
        cls: ChaiQuery, path: str | Path, query_name: str | None = None, **kwargs
    ) -> ChaiQuery:
        """Initialize a ChaiQuery instance from a file.

        Supported file format are:
            - FASTA

        Args:
            path (str | Path): Path of the FASTA file.
            query_name (str | None, optional): User-defined query name. Defaults to None.


        Returns:
            ChaiQuery
        """
        path = validate_path(path, is_file=True, file_suffix=(".fasta", ".fa"))

        custom_msa_paths = kwargs.pop("custom_msa_paths", None)
        if custom_msa_paths:
            kwargs["custom_msa_paths"] = cls._upload_custom_msa_files(custom_msa_paths)

        query_name = query_name or path.stem
        return cls(
            fasta_files={path.stem: validate_fasta(path, str_output=True)},
            query_name=query_name,
            parameters=ChaiParameters(**kwargs),
        )

    @classmethod
    def from_directory(
        cls: ChaiQuery, path: str | Path, query_name: str | None = None, **kwargs
    ) -> ChaiQuery:
        """Initialize a ChaiQuery instance from a directory.

        Supported file format in directory are:
            - FASTA

        Args:
            path (str | Path): Path to a directory of FASTA files.
            query_name (str | None, optional): User-defined query name. Defaults to None.
            seed (int, optional): Random seed. Defaults to 0.

        Raises:
            ValueError: If no FASTA file are present in the directory.

        Returns:
            ChaiQuery
        """
        path = validate_path(path, is_dir=True)
        custom_msa_paths = kwargs.pop("custom_msa_paths", None)
        if custom_msa_paths:
            kwargs["custom_msa_paths"] = cls._upload_custom_msa_files(custom_msa_paths)
            print(kwargs["custom_msa_paths"])
        fasta_files = {
            file.stem: validate_fasta(file, str_output=True)
            for file in chain(path.glob("*.fasta"), path.glob("*.fa"))
        }
        if not fasta_files:
            raise ValueError(f"No FASTA files found in directory '{path}'.")
        query_name = query_name or path.name
        return cls(
            fasta_files=fasta_files,
            query_name=query_name,
            parameters=ChaiParameters(**kwargs),
        )

    @property
    def payload(self) -> dict[str, Any]:
        """Payload to send to the prediction API endpoint."""
        return {
            "fasta_files": self.fasta_files,
            "use_msa_server": self.parameters.use_msa_server,
            "use_templates_server": self.parameters.use_templates_server,
            "num_trunk_recycles": self.parameters.num_trunk_recycles,
            "seed": self.parameters.seed,
            "num_diffn_timesteps": self.parameters.num_diffn_timesteps,
            "restraints": self.parameters.restraints,
            "recycle_msa_subsample": self.parameters.recycle_msa_subsample,
            "num_trunk_samples": self.parameters.num_trunk_samples,
            "custom_msa_paths": self.parameters.custom_msa_paths,
        }

    @property
    def parameters(self) -> ChaiParameters:
        """Parameters of the query."""
        return self._parameters

    @staticmethod
    def _upload_custom_msa_files(
        source: str, headers: str | None = None
    ) -> dict[str, str]:
        """Read A3M or MSA files from a file or directory and uploads them to GCS.

        Args:
            source (str): Path to an .a3m or .aligned.pqt file or a directory containing .a3m or .aligned.pqt files
            identity_token (str | None, optional): GCP identity token. Defaults to None.

        Raises:
            ValueError: If file has unsupported extension.
            ValueError: If directory has no supported file.

        Returns:
            dict[str, str]: _description_
        """

        headers = headers or get_auth_headers()
        source_path = validate_path(source)

        # Process if source is a file.
        if source_path.is_file():
            if source_path.suffix == ".a3m":
                with tempfile.TemporaryDirectory() as tmpdir:
                    tmp_path = Path(tmpdir)
                    shutil.copy(source_path, tmp_path / source_path.name)
                    pqt_file = a3m_to_aligned_pqt(str(tmp_path))
                    return process_uploaded_msas([Path(pqt_file)], headers)
            elif source_path.name.endswith(".aligned.pqt"):
                return process_uploaded_msas([source_path], headers)
            else:
                raise ValueError(
                    f"Invalid file type: {source_path.suffix}. Expected '.a3m' or a file ending with '.aligned.pqt'."
                )

        # Process if source is a directory.
        elif source_path.is_dir():
            pqt_files = list(source_path.glob("*.aligned.pqt"))
            if pqt_files:
                return process_uploaded_msas(pqt_files, headers)

            a3m_files = list(source_path.glob("*.a3m"))
            if not a3m_files:
                raise ValueError(
                    f"Directory '{source}' contains no files ending with '.aligned.pqt' or '.a3m'."
                )
            with tempfile.TemporaryDirectory() as tmpdir:
                tmp_path = Path(tmpdir)
                for file in a3m_files:
                    shutil.copy(file, tmp_path / file.name)
                pqt_file = a3m_to_aligned_pqt(str(tmp_path))
                return process_uploaded_msas([Path(pqt_file)], headers)