File size: 17,223 Bytes
b8a625b f601557 b8a625b f601557 e967c14 b26b7a0 f601557 b26b7a0 e967c14 f601557 b26b7a0 b8a625b b26b7a0 b8a625b 6354ea8 b8a625b 01fba1c b26b7a0 b8a625b 01fba1c b26b7a0 01fba1c b8a625b 6354ea8 b8a625b b26b7a0 b8a625b 354bfc2 b8a625b 01fba1c b8a625b 6354ea8 b8a625b 01fba1c 6354ea8 01fba1c 6354ea8 b8a625b b26b7a0 b8a625b 01fba1c b8a625b 354bfc2 b26b7a0 01fba1c b8a625b f601557 b26b7a0 f601557 b26b7a0 f601557 b26b7a0 6354ea8 b8a625b f601557 b26b7a0 6354ea8 b26b7a0 6354ea8 b8a625b b26b7a0 6354ea8 b26b7a0 6354ea8 b26b7a0 b8a625b 250a4a2 01fba1c 354bfc2 01fba1c 250a4a2 01fba1c 250a4a2 01fba1c 354bfc2 01fba1c 250a4a2 01fba1c 354bfc2 01fba1c 250a4a2 01fba1c 354bfc2 142035a e967c14 142035a f601557 142035a 6354ea8 01fba1c 6354ea8 142035a 6354ea8 250a4a2 01fba1c 250a4a2 6354ea8 0777d7d d837caf bd9f299 d837caf 6354ea8 0777d7d 6354ea8 e967c14 354bfc2 bf6f326 142035a d837caf 01fba1c 0777d7d f601557 e967c14 d837caf 0777d7d d837caf 142035a b26b7a0 d837caf e967c14 01fba1c d837caf e967c14 142035a d837caf 354bfc2 e967c14 d837caf e967c14 354bfc2 d837caf 142035a f601557 b8a625b 354bfc2 b8a625b 01fba1c b8a625b 01fba1c b8a625b 6354ea8 b8a625b 250a4a2 b8a625b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 |
"""Folding Studio Demo App."""
import logging
import gradio as gr
import pandas as pd
from folding_studio_data_models import FoldingModel
from gradio_molecule3d import Molecule3D
from folding_studio_demo.correlate import (
SCORE_COLUMN_NAMES,
SCORE_COLUMNS,
compute_correlation_data,
fake_predict_and_correlate,
get_score_description,
make_regression_plot,
plot_correlation_ranking,
)
from folding_studio_demo.predict import filter_predictions, predict, predict_comparison
logger = logging.getLogger(__name__)
MOLECULE_REPS = [
{
"model": 0,
# "chain": "",
# "resname": "",
"style": "cartoon",
"color": "alphafold",
# "residue_range": "",
"around": 0,
"byres": False,
# "visible": False,
# "opacity": 0.5
}
]
MODEL_CHOICES = [
("AlphaFold2", FoldingModel.AF2),
("OpenFold", FoldingModel.OPENFOLD),
# ("SoloSeq", FoldingModel.SOLOSEQ),
("Boltz-1", FoldingModel.BOLTZ),
("Chai-1", FoldingModel.CHAI),
("Protenix", FoldingModel.PROTENIX),
]
MONOMER_SEQ_EXAMPLE = ">A|protein\nMALWMRLLPLLALLALWGPDPAAA"
MULTIMER_SEQ_EXAMPLE = ">A|protein\nSQIPASEQETLVRPKPLLLKLLKSVGAQKDTYTMKEVLFYLGQYIMTKRLYDAAQQHIVYCSNDLLGDLFGVPSFSVKEHRKIYTMIYRNLVVVNQQESSDSGTSVSEN\n>B|protein\nSQETFSDLWKLLPEN"
EXAMPLES = [
["Monomer", MONOMER_SEQ_EXAMPLE],
["Multimer", MULTIMER_SEQ_EXAMPLE],
]
def sequence_input(dropdown: gr.Dropdown | None = None) -> gr.Textbox:
"""Sequence input component.
Returns:
gr.Textbox: Sequence input component
"""
with gr.Column():
with gr.Row():
with gr.Row():
with gr.Column():
sequence = gr.Textbox(
label="Protein Sequence",
placeholder="Enter a protein sequence or upload a FASTA file",
value=MONOMER_SEQ_EXAMPLE,
lines=5,
)
gr.Markdown(
"Select an example below, enter a sequence manually or upload a FASTA file."
)
file_input = gr.File(
label="Upload a FASTA file",
file_types=[".fasta", ".fa"],
scale=0,
height=150,
)
with gr.Row(equal_height=True):
with gr.Column():
with gr.Row():
gr.Markdown("**Monomer Example:**")
gr.Markdown("**Multimer Example:**")
with gr.Row():
gr.Markdown("```\n" + MONOMER_SEQ_EXAMPLE + "\n```")
gr.Markdown("```\n" + MULTIMER_SEQ_EXAMPLE + "\n```")
with gr.Row():
gr.Button("Load Monomer Example", size="md").click(
fn=lambda: MONOMER_SEQ_EXAMPLE,
outputs=[sequence],
)
gr.Button("Load Multimer Example", size="md").click(
fn=lambda: MULTIMER_SEQ_EXAMPLE, outputs=[sequence]
)
def _process_file(file: gr.File | None) -> gr.Textbox:
if file is None:
return gr.Textbox()
try:
with open(file.name, "r") as f:
content = f.read().strip()
return gr.Textbox(value=content)
except Exception as e:
logger.error(f"Error reading file: {e}")
return gr.Textbox()
file_input.change(fn=_process_file, inputs=[file_input], outputs=[sequence])
return sequence
def simple_prediction(api_key: str) -> None:
"""Simple prediction tab.
Args:
api_key (str): Folding Studio API key
"""
gr.Markdown(
"""
## Predict a Protein Structure
It will be run in the background and the results will be displayed in the output section.
The output will contain the protein structure and the pLDDT plot.
Select a model to run the inference with and enter a protein sequence or upload a FASTA file.
"""
)
with gr.Row():
dropdown = gr.Dropdown(
label="Model",
choices=MODEL_CHOICES,
scale=0,
value=FoldingModel.BOLTZ,
)
with gr.Column():
sequence = sequence_input(dropdown)
predict_btn = gr.Button(
"Predict",
elem_classes="gradient-button",
elem_id="predict-btn",
variant="primary",
)
with gr.Row():
mol_output = Molecule3D(label="Protein Structure", reps=MOLECULE_REPS)
metrics_plot = gr.Plot(label="pLDDT")
predict_btn.click(
fn=lambda x, y, z: predict(x, y, z, format_fasta=True),
inputs=[sequence, api_key, dropdown],
outputs=[mol_output, metrics_plot],
)
def model_comparison(api_key: str) -> None:
"""Model comparison tab.
Args:
api_key (str): Folding Studio API key
"""
gr.Markdown(
"""
## Compare Folding Models
This tab allows you to compare predictions from multiple protein folding models side by side.
Follow these steps to get started:
1. **Select Models**: Choose one or more models from the list on the left
2. **Input Sequence** : Either select an example sequence, enter your protein sequence directly in the text box or upload a FASTA file.
3. **Run Comparison**: Click "Compare Models" to start the prediction
"""
)
with gr.Row():
models = gr.CheckboxGroup(
label="Model",
choices=MODEL_CHOICES,
scale=0,
min_width=150,
value=[FoldingModel.BOLTZ, FoldingModel.CHAI, FoldingModel.PROTENIX],
)
with gr.Column():
sequence = sequence_input()
predict_btn = gr.Button(
"Compare Models",
elem_classes=["gradient-button"],
elem_id="compare-models-btn",
variant="primary",
)
with gr.Row():
with gr.Column():
gr.Markdown(
"""
### Understanding the Outputs:
- **3D Structure**: The molecular viewer shows the predicted protein structure
- **pLDDT Score**: A confidence score (0-100) for each residue:
- Very high (>90): Highly accurate
- Confident (70-90): Good accuracy
- Low (50-70): Limited accuracy
- Very low (<50): Poor accuracy
"""
)
gr.Markdown(
"### Model Predictions\nUse the checkboxes to toggle which model predictions to compare:"
)
with gr.Row():
af2_predictions = gr.CheckboxGroup(label="AlphaFold2", visible=False)
openfold_predictions = gr.CheckboxGroup(label="OpenFold", visible=False)
solo_predictions = gr.CheckboxGroup(label="SoloSeq", visible=False)
chai_predictions = gr.CheckboxGroup(label="Chai", visible=False)
protenix_predictions = gr.CheckboxGroup(label="Protenix", visible=False)
boltz_predictions = gr.CheckboxGroup(label="Boltz", visible=False)
with gr.Row():
mol_outputs = Molecule3D(
label="Protein Structure", reps=MOLECULE_REPS, height=1000
)
metrics_plot = gr.Plot(label="pLDDT")
# Store the initial predictions
prediction_outputs = gr.State()
predict_btn.click(
fn=predict_comparison,
inputs=[sequence, api_key, models],
outputs=[
prediction_outputs,
af2_predictions,
openfold_predictions,
solo_predictions,
chai_predictions,
boltz_predictions,
protenix_predictions,
],
).then(
fn=filter_predictions,
inputs=[
prediction_outputs,
af2_predictions,
openfold_predictions,
solo_predictions,
chai_predictions,
boltz_predictions,
protenix_predictions,
],
outputs=[mol_outputs, metrics_plot],
)
# Handle checkbox changes
for checkbox in [
af2_predictions,
openfold_predictions,
solo_predictions,
chai_predictions,
boltz_predictions,
protenix_predictions,
]:
checkbox.change(
fn=filter_predictions,
inputs=[
prediction_outputs,
af2_predictions,
openfold_predictions,
solo_predictions,
chai_predictions,
boltz_predictions,
protenix_predictions,
],
outputs=[mol_outputs, metrics_plot],
)
def create_antibody_discovery_tab():
gr.Markdown(
"# Accelerating Antibody Discovery: In-Silico and Experimental Insights"
)
gr.Markdown("""
Let's dive into how we're using AI to accelerate antibody drug discovery by looking at how protein folding models stack up against real lab data.
We've got this dataset that shows how well different antibodies stick to a specific target (we measure this as KD in nM).
For each antibody-target pair, we've recorded:
- The antibody's light and heavy chain sequences (think of them as the antibody's building blocks)
- The target (antigen) sequence
- How strongly they bind together in the lab (the KD value, lower means stronger binding)
Why is it interesting? We take these sequences and feed them into protein folding models
that predict their 3D structures. The models tell us how confident they are about their predictions.
By comparing these confidence scores with our lab results, we can figure out which model scores
are actually good at predicting real binding strength!
Why is this useful for drug discovery? Once we know which computational scores to trust,
we can use them to quickly check thousands of potential antibodies without having to test each one
in the lab. We can then focus our lab work on testing just the most promising candidates.
This means we can find effective antibody drugs much faster than before!
""")
spr_data_with_scores = pd.read_csv("spr_af_scores_mapped.csv")
spr_data_with_scores = spr_data_with_scores.rename(columns=SCORE_COLUMN_NAMES)
prettified_columns = {
"antibody_name": "Antibody Name",
"KD (nM)": "KD (nM)",
"antibody_vh_sequence": "Antibody VH Sequence",
"antibody_vl_sequence": "Antibody VL Sequence",
"antigen_sequence": "Antigen Sequence",
}
spr_data_with_scores = spr_data_with_scores.rename(columns=prettified_columns)
columns = [
"Antibody Name",
"KD (nM)",
"Antibody VH Sequence",
"Antibody VL Sequence",
"Antigen Sequence",
]
# Display dataframe with floating point values rounded to 2 decimal places
gr.DataFrame(
value=spr_data_with_scores[columns].round(2),
label="Experimental Antibody-Antigen Binding Affinity Data",
)
gr.Markdown("# Prediction and correlation")
with gr.Row():
with gr.Column(min_width=150):
gr.Markdown(
"Now, let's see how well the protein folding models can predict the binding affinity of these antibodies to the target antigen."
)
with gr.Column(min_width=150):
fake_predict_btn = gr.Button(
"Predict structures of all complexes",
elem_classes="gradient-button",
variant="primary",
)
prediction_dataframe = gr.Dataframe(
label="Predicted Structures Data", visible=False
)
prediction_dataframe.change(
fn=lambda x: gr.Dataframe(x, visible=True),
inputs=[prediction_dataframe],
outputs=[prediction_dataframe],
)
with gr.Row(visible=False) as explanation_row:
gr.Markdown(
"""
We now have the predicted structures along with the models confidence scores of all complexes. Let's see if we can find a correlation
between the confidence scores and the binding affinity.
Spearman and Pearson are statistical methods commonly used to measure the correlation between
two variables. Higher values indicate a stronger correlation.
Here **Boltz Complex ipLDDT** is the best predictor of binding affinity.
""",
)
with gr.Row(visible=False) as correlation_row:
with gr.Column(scale=0):
with gr.Row():
correlation_type = gr.Radio(
choices=["Spearman", "Pearson"],
value="Spearman",
label="Correlation Type",
interactive=True,
min_width=150,
)
with gr.Row():
log_scale = gr.Checkbox(
label="Use log scale for KD",
value=True,
min_width=150,
)
with gr.Column():
correlation_ranking_plot = gr.Plot(label="Correlation ranking")
with gr.Row(visible=False) as regression_row:
with gr.Column(scale=0):
# User can select the columns to display in the correlation plot
correlation_column = gr.Dropdown(
label="Score data to display",
choices=SCORE_COLUMNS,
multiselect=False,
value="Boltz Complex ipLDDT",
)
score_description = gr.Markdown(
get_score_description(correlation_column.value)
)
correlation_column.change(
fn=lambda x: get_score_description(x),
inputs=correlation_column,
outputs=score_description,
)
with gr.Column():
regression_plot = gr.Plot(label="Correlation with binding affinity")
fake_predict_btn.click(
fn=lambda x: (
*fake_predict_and_correlate(
spr_data_with_scores, SCORE_COLUMNS, ["Antibody Name", "KD (nM)"]
),
gr.Row(visible=True),
gr.Row(visible=True),
gr.Row(visible=True)
),
inputs=[correlation_type],
outputs=[
prediction_dataframe,
correlation_ranking_plot,
regression_plot,
explanation_row,
correlation_row,
regression_row,
],
)
def update_plots_with_log(correlation_type, score, use_log):
logger.info(f"Updating correlation plot for {correlation_type}")
corr_data = compute_correlation_data(spr_data_with_scores, SCORE_COLUMNS)
logger.info(f"Correlation data: {corr_data}")
corr_ranking_plot = plot_correlation_ranking(
corr_data, correlation_type, kd_col="KD (nM)" if not use_log else "log_kd"
)
regression_plot = make_regression_plot(spr_data_with_scores, score, use_log)
return regression_plot, corr_ranking_plot
correlation_column.change(
fn=update_plots_with_log,
inputs=[correlation_type, correlation_column, log_scale],
outputs=[regression_plot, correlation_ranking_plot],
)
correlation_type.change(
fn=update_plots_with_log,
inputs=[correlation_type, correlation_column, log_scale],
outputs=[regression_plot, correlation_ranking_plot],
)
log_scale.change(
fn=update_plots_with_log,
inputs=[correlation_type, correlation_column, log_scale],
outputs=[regression_plot, correlation_ranking_plot],
)
def __main__():
theme = gr.themes.Ocean(
primary_hue="blue",
secondary_hue="purple",
)
with gr.Blocks(theme=theme, title="Folding Studio Demo") as demo:
gr.Markdown(
"""
# Folding Studio: Harness the Power of Protein Folding π§¬
Folding Studio is a platform for protein structure prediction.
It uses the latest AI-powered folding models to predict the structure of a protein.
Available models are : AlphaFold2, OpenFold, Boltz-1, Chai and Protenix.
"""
)
with gr.Accordion("API Key", open=False):
gr.Markdown(
"""
To use the Folding Studio API, you need to provide an API key.
You can get your API key by asking to the Folding Studio team.
"""
)
api_key = gr.Textbox(
placeholder="Enter your Folding Studio API key",
type="password",
show_label=False,
)
gr.Markdown("## Demo Usage")
with gr.Tab("π Basic Folding"):
simple_prediction(api_key)
with gr.Tab("π Model Comparison"):
model_comparison(api_key)
with gr.Tab("π§ͺ Antibody Discovery Pipeline"):
create_antibody_discovery_tab()
demo.launch()
|