File size: 19,079 Bytes
b8a625b
 
6354ea8
b8a625b
 
f601557
b8a625b
6354ea8
b8a625b
 
 
 
 
f601557
b8a625b
 
6354ea8
 
 
 
 
 
 
b8a625b
 
 
 
 
 
 
 
 
b26b7a0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b8a625b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b26b7a0
01fba1c
b26b7a0
6354ea8
b26b7a0
b8a625b
b26b7a0
6354ea8
01fba1c
 
 
 
 
 
 
 
 
 
b26b7a0
 
 
 
01fba1c
 
b26b7a0
 
6354ea8
b26b7a0
 
f601557
 
b8a625b
 
b26b7a0
b8a625b
 
 
 
 
b26b7a0
b8a625b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f601557
 
 
 
 
 
 
b8a625b
 
 
 
 
 
01fba1c
 
 
6354ea8
 
 
 
 
 
 
 
 
 
 
 
f601557
b26b7a0
01fba1c
f601557
 
 
 
01fba1c
f601557
 
 
 
 
01fba1c
b26b7a0
01fba1c
 
 
f601557
01fba1c
b8a625b
 
b26b7a0
 
 
 
 
 
 
b8a625b
 
 
 
 
 
b26b7a0
 
b8a625b
 
 
 
f601557
 
b8a625b
b26b7a0
b8a625b
 
 
 
 
 
 
 
 
 
 
6354ea8
 
 
 
b8a625b
 
 
 
 
b26b7a0
 
b8a625b
b26b7a0
b8a625b
 
b26b7a0
b8a625b
 
b26b7a0
b8a625b
 
 
 
f601557
 
 
b26b7a0
 
 
 
 
f601557
6354ea8
 
 
 
 
 
 
 
 
 
01fba1c
f601557
b26b7a0
 
6354ea8
 
 
 
 
 
 
 
 
 
 
b26b7a0
 
 
6354ea8
f601557
b26b7a0
 
 
f601557
 
6354ea8
 
 
f601557
b8a625b
f601557
6354ea8
f601557
 
 
 
 
 
 
 
6354ea8
 
 
 
 
 
 
f601557
 
6354ea8
 
 
 
 
 
 
f601557
6354ea8
 
f601557
6354ea8
 
f601557
6354ea8
 
f601557
6354ea8
 
 
 
f601557
6354ea8
f601557
6354ea8
f601557
 
b26b7a0
6354ea8
 
 
 
b26b7a0
 
 
 
 
 
 
 
 
 
 
 
6354ea8
b26b7a0
 
 
 
 
 
 
 
6354ea8
b26b7a0
 
6354ea8
 
 
 
 
 
 
 
b26b7a0
6354ea8
b26b7a0
6354ea8
b26b7a0
 
 
 
6354ea8
 
 
 
 
b26b7a0
 
 
 
 
 
 
 
 
 
6354ea8
b26b7a0
6354ea8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
01fba1c
6354ea8
 
 
 
 
 
 
 
 
01fba1c
 
6354ea8
b26b7a0
 
f601557
b26b7a0
 
6354ea8
 
 
 
b26b7a0
 
 
 
 
f601557
 
 
 
b26b7a0
 
f601557
 
b26b7a0
6354ea8
 
 
 
b26b7a0
 
 
f601557
 
 
 
6354ea8
 
 
b26b7a0
 
6354ea8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b8a625b
b26b7a0
6354ea8
 
b8a625b
b26b7a0
 
 
6354ea8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b26b7a0
 
6354ea8
 
b26b7a0
 
 
6354ea8
 
b26b7a0
 
 
6354ea8
 
b26b7a0
 
 
6354ea8
 
 
 
b26b7a0
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
"""Predict protein structure using Folding Studio."""

import concurrent.futures
import hashlib
import logging
from io import StringIO
from pathlib import Path
from typing import Any

import gradio as gr
import numpy as np
import plotly.graph_objects as go
from Bio import SeqIO
from Bio.PDB import PDBIO, MMCIFParser, PDBParser, Superimposer
from folding_studio_data_models import FoldingModel

from folding_studio_demo.models import (
    AF2Model,
    BoltzModel,
    ChaiModel,
    OpenFoldModel,
    ProtenixModel,
)

logger = logging.getLogger(__name__)

SEQUENCE_DIR = Path("sequences")
SEQUENCE_DIR.mkdir(parents=True, exist_ok=True)

OUTPUT_DIR = Path("output")
OUTPUT_DIR.mkdir(parents=True, exist_ok=True)

THREE_TO_ONE_LETTER = {
    "ALA": "A",
    "ARG": "R",
    "ASN": "N",
    "ASP": "D",
    "CYS": "C",
    "GLN": "Q",
    "GLU": "E",
    "GLY": "G",
    "HIS": "H",
    "ILE": "I",
    "LEU": "L",
    "LYS": "K",
    "MET": "M",
    "PHE": "F",
    "PRO": "P",
    "SER": "S",
    "THR": "T",
    "TRP": "W",
    "TYR": "Y",
    "VAL": "V",
    "SEC": "U",
    "PYL": "O",
    "ASX": "B",
    "GLX": "Z",
    "XAA": "X",
    "XLE": "J",
    "UNK": "X",
}


def convert_to_one_letter(resname: str) -> str:
    """Convert three-letter amino acid code to one-letter code.

    Args:
        resname (str): Three-letter amino acid code

    Returns:
        str: One-letter amino acid code
    """
    return THREE_TO_ONE_LETTER.get(resname, "X")


def convert_cif_to_pdb(cif_path: str, pdb_path: str) -> None:
    """Convert a .cif file to .pdb format using Biopython.

    Args:
        cif_path (str): Path to input .cif file
        pdb_path (str): Path to output .pdb file
    """
    # Parse the CIF file
    parser = MMCIFParser()
    structure = parser.get_structure("structure", cif_path)

    # Save as PDB
    io = PDBIO()
    io.set_structure(structure)
    io.save(pdb_path)


def create_plddt_figure(
    plddt_vals: list[dict[str, dict[str, list[float]]]],
    model_name: str,
    indexes: list[int],
) -> go.Figure:
    """Create a plot of metrics."""
    plddt_traces = []

    for i, (pred_plddt, index) in enumerate(zip(plddt_vals, indexes)):
        hover_text = []
        plddt_values = []
        for chain_id, plddt_val in pred_plddt.items():
            plddt_values += plddt_val["values"]
            hover_text += [
                f"<i>{model_name} {index} - Chain {chain_id}</i><br><i>pLDDT</i>: {plddt:.2f}<br><i>Residue:</i> {code} {idx}"
                for idx, (plddt, code) in enumerate(
                    zip(plddt_val["values"], plddt_val["residue_codes"])
                )
            ]

        plddt_traces.append(
            go.Scatter(
                x=np.arange(len(plddt_values)),
                y=plddt_values,
                hovertemplate="%{text}<extra></extra>",
                text=hover_text,
                name=f"{model_name} {index}",
                visible=True,
            )
        )
    plddt_fig = go.Figure(data=plddt_traces)
    plddt_fig.update_layout(
        title="pLDDT",
        xaxis_title="Residue",
        yaxis_title="pLDDT",
        height=500,
        template="simple_white",
        legend=dict(yanchor="bottom", y=0.01, xanchor="left", x=0.99),
    )

    return plddt_fig


def _write_fasta_file(
    sequence: str, directory: Path = SEQUENCE_DIR
) -> tuple[str, Path]:
    """Write sequence to FASTA file.

    Args:
        sequence (str): Sequence to write to FASTA file
        directory (Path): Directory to write FASTA file to (default: SEQUENCE_DIR)

    Returns:
        tuple[str, Path]: Tuple containing the sequence ID and the path to the FASTA file
    """
    input_rep = list(SeqIO.parse(StringIO(sequence), "fasta"))
    if not input_rep:
        raise gr.Error("No sequence found")

    seq_id = hashlib.sha256(
        "_".join([str(records.seq) for records in input_rep]).encode()
    ).hexdigest()
    seq_file = directory / f"sequence_{seq_id}.fasta"
    with open(seq_file, "w") as f:
        f.write(sequence)
    return seq_id, seq_file


def extract_plddt_from_structure(
    structure_path: str,
) -> dict[str, dict[str, list[float]]]:
    """Extract pLDDT values and residue codes from a structure file.

    Args:
        structure_path (Path): Path to structure file

    Returns:
        tuple[list[float], list[str]]: Tuple containing lists of pLDDT values and residue codes
    """
    if Path(structure_path).suffix == ".cif":
        structure = MMCIFParser().get_structure("structure", structure_path)
    else:
        structure = PDBParser().get_structure("structure", structure_path)

    # Lists to store pLDDT values and residue codes
    plddt_values = {}

    # Iterate through all atoms
    for model in structure:
        for chain in model:
            plddt_values[chain.id] = {"values": [], "residue_codes": []}
            for residue in chain:
                # Get the first atom of each residue (usually CA atom)
                if "CA" in residue:
                    # The B-factor contains the pLDDT value
                    plddt = residue["CA"].get_bfactor()
                    plddt_values[chain.id]["values"].append(plddt)
                    # Get residue code and convert to one-letter code
                    plddt_values[chain.id]["residue_codes"].append(
                        convert_to_one_letter(residue.get_resname())
                    )

    return plddt_values


def predict(
    sequence: str,
    api_key: str,
    model_type: FoldingModel,
    format_fasta: bool = False,
    progress=gr.Progress(),
) -> tuple[str, str]:
    """Predict protein structure from amino acid sequence using Boltz model.

    Args:
        sequence (str): Amino acid sequence to predict structure for
        api_key (str): Folding API key
        model (FoldingModel): Folding model to use
        format_fasta (bool): Whether to format the FASTA file
        progress (gr.Progress): Gradio progress tracker

    Returns:
        tuple[str, str]: Tuple containing the path to the PDB file and the pLDDT plot
    """
    if not api_key:
        raise gr.Error("Missing API key, please enter a valid API key")

    progress(0, desc="Setting up prediction...")
    # Set up unique output directory based on sequence hash
    seq_id, seq_file = _write_fasta_file(sequence)
    output_dir = OUTPUT_DIR / seq_id / model_type
    output_dir.mkdir(parents=True, exist_ok=True)

    if model_type == FoldingModel.BOLTZ:
        model = BoltzModel(api_key)
    elif model_type == FoldingModel.CHAI:
        model = ChaiModel(api_key)
    elif model_type == FoldingModel.PROTENIX:
        model = ProtenixModel(api_key)
    elif model_type == FoldingModel.AF2:
        model = AF2Model(api_key)
    elif model_type == FoldingModel.OPENFOLD:
        model = OpenFoldModel(api_key)
    else:
        raise ValueError(f"Model {model_type} not supported")

    # Check if prediction already exists
    if not model.has_prediction(output_dir):
        progress(0.2, desc="Running prediction...")
        # Run prediction
        logger.info(f"Predicting {seq_id}")
        model.call(seq_file=seq_file, output_dir=output_dir, format_fasta=format_fasta)
        logger.info("Prediction done. Output directory: %s", output_dir)
    else:
        progress(0.2, desc="Using existing prediction...")
        logger.info("Prediction already exists. Output directory: %s", output_dir)

    progress(0.4, desc="Processing results...")
    # Convert output CIF to PDB
    if not model.has_prediction(output_dir):
        raise gr.Error("No prediction found")

    predictions = model.predictions(output_dir)
    pdb_paths = []
    model_plddt_vals = []

    total_predictions = len(predictions)
    for i, (model_idx, prediction) in enumerate(predictions.items()):
        progress(
            0.4 + (0.4 * i / total_predictions), desc=f"Converting model {model_idx}..."
        )
        prediction_path = prediction["prediction_path"]
        logger.info(f"Prediction file: {prediction_path}")
        if Path(prediction_path).suffix == ".cif":
            converted_pdb_path = str(
                output_dir / f"{model.model_name}_prediction_{model_idx}.pdb"
            )
            convert_cif_to_pdb(str(prediction_path), str(converted_pdb_path))
            pdb_paths.append(converted_pdb_path)
        else:
            pdb_paths.append(str(prediction_path))
        plddt_vals = extract_plddt_from_structure(prediction_path)
        model_plddt_vals.append(plddt_vals)

    progress(0.8, desc="Generating plots...")
    indexes = []
    for pdb_path in pdb_paths:
        if model_type in [
            FoldingModel.AF2,
            FoldingModel.OPENFOLD,
            FoldingModel.SOLOSEQ,
        ]:
            indexes.append(int(Path(pdb_path).stem.split("_")[2]))
        else:
            indexes.append(int(Path(pdb_path).stem[-1]))

    plddt_fig = create_plddt_figure(
        plddt_vals=model_plddt_vals,
        model_name=model.model_name,
        indexes=indexes,
    )

    progress(1.0, desc="Done!")
    return pdb_paths, plddt_fig


def align_structures(
    model_predictions: dict[FoldingModel, dict[int, dict[str, Any]]],
) -> list[str]:
    """Align multiple PDB structures to the first structure.

    Args:
        model_predictions (dict[FoldingModel, dict[int, dict[str, Any]]]): Dictionary mapping models to their prediction indices

    Returns:
        list[str]: List of paths to aligned PDB files
    """

    parser = PDBParser()
    io = PDBIO()

    # Get the first structure as reference
    first_model = next(iter(model_predictions.keys()))
    first_pred = next(iter(model_predictions[first_model].values()))
    ref_pdb_path = first_pred["pdb_path"]

    # Parse reference structure and get CA atoms
    ref_structure = parser.get_structure("reference", ref_pdb_path)
    ref_atoms = [atom for atom in ref_structure.get_atoms() if atom.get_name() == "CA"]

    for model_type in model_predictions.keys():
        for index, prediction in model_predictions[model_type].items():
            pdb_path = prediction["pdb_path"]

            # Parse the structure to align
            structure = parser.get_structure(f"{model_type}_{index}", pdb_path)
            atoms = [atom for atom in structure.get_atoms() if atom.get_name() == "CA"]

            # Create superimposer
            sup = Superimposer()

            # Set the reference and moving atoms
            sup.set_atoms(ref_atoms, atoms)

            # Apply the transformation to all atoms in the structure
            sup.apply(structure.get_atoms())

            # Save the aligned structure
            aligned_path = str(Path(pdb_path).parent / f"aligned_{Path(pdb_path).name}")
            io.set_structure(structure)
            io.save(aligned_path)

            model_predictions[model_type][index]["pdb_path"] = aligned_path

    return model_predictions


def filter_predictions(
    model_predictions: dict[FoldingModel, dict[int, dict[str, Any]]],
    af2_selected: list[int],
    openfold_selected: list[int],
    solo_selected: list[int],
    chai_selected: list[int],
    boltz_selected: list[int],
    protenix_selected: list[int],
) -> tuple[list[str], go.Figure]:
    """Filter predictions based on selected checkboxes.

    Args:
        aligned_paths (list[str]): List of aligned PDB paths
        plddt_fig (go.Figure): Original pLDDT plot
        chai_selected (list[int]): Selected Chai model indices
        boltz_selected (list[int]): Selected Boltz model indices
        protenix_selected (list[int]): Selected Protenix model indices
        model_predictions (dict[FoldingModel, dict[int, dict[str, Any]]]): Dictionary mapping models to their prediction indices

    Returns:
        tuple[list[str], go.Figure]: Filtered PDB paths and updated pLDDT plot
    """
    # Create a new figure with only selected traces
    filtered_fig = go.Figure()

    # Keep track of which traces to show
    filtered_paths = []

    # Helper function to check if a trace should be visible
    def should_show_trace(model_name, pred_index: int) -> bool:
        if model_name == FoldingModel.CHAI and pred_index in chai_selected:
            return True
        if model_name == FoldingModel.BOLTZ and pred_index in boltz_selected:
            return True
        if model_name == FoldingModel.PROTENIX and pred_index in protenix_selected:
            return True
        if model_name == FoldingModel.AF2 and pred_index in af2_selected:
            return True
        if model_name == FoldingModel.OPENFOLD and pred_index in openfold_selected:
            return True
        if model_name == FoldingModel.SOLOSEQ and pred_index in solo_selected:
            return True
        return False

    # Filter traces and paths
    for model_type in model_predictions.keys():
        for index, prediction in model_predictions[model_type].items():
            if should_show_trace(model_type, index):
                filtered_fig.add_trace(prediction["plddt_trace"])
                filtered_paths.append(prediction["pdb_path"])

    # Update layout
    filtered_fig.update_layout(
        title="pLDDT",
        xaxis_title="Residue index",
        yaxis_title="pLDDT",
        height=500,
        template="simple_white",
        legend=dict(yanchor="bottom", y=0.01, xanchor="left", x=0.99),
    )
    return filtered_paths, filtered_fig


def run_prediction(
    sequence: str,
    api_key: str,
    model_type: FoldingModel,
    format_fasta: bool = False,
) -> dict[FoldingModel, dict[int, dict[str, Any]]]:
    """Run a single prediction.

    Args:
        sequence (str): Amino acid sequence to predict structure for
        api_key (str): Folding API key
        model_type (FoldingModel): Folding model to use
        format_fasta (bool): Whether to format the FASTA file

    Returns:
        Tuple containing:
            - List of PDB paths
            - pLDDT plot
            - Dictionary mapping model to prediction indices
    """
    model_pdb_paths, model_plddt_traces = predict(
        sequence, api_key, model_type, format_fasta=format_fasta
    )
    model_predictions = {}
    for pdb_path, plddt_traces in zip(model_pdb_paths, model_plddt_traces.data):
        if model_type in [
            FoldingModel.AF2,
            FoldingModel.OPENFOLD,
            FoldingModel.SOLOSEQ,
        ]:
            index = int(Path(pdb_path).stem.split("_")[2])
        else:
            index = int(Path(pdb_path).stem[-1])

        model_predictions[index] = {"pdb_path": pdb_path, "plddt_trace": plddt_traces}

    return model_predictions


def predict_comparison(
    sequence: str, api_key: str, model_types: list[FoldingModel], progress=gr.Progress()
) -> tuple[
    dict[FoldingModel, dict[int, dict[str, Any]]],
    gr.CheckboxGroup,
    gr.CheckboxGroup,
    gr.CheckboxGroup,
    gr.CheckboxGroup,
    gr.CheckboxGroup,
    gr.CheckboxGroup,
]:
    """Predict protein structure from amino acid sequence using multiple models.

    Args:
        sequence (str): Amino acid sequence to predict structure for
        api_key (str): Folding API key
        model_types (list[FoldingModel]): List of folding models to use
        progress (gr.Progress): Gradio progress tracker

    Returns:
        tuple containing:
            - dict[FoldingModel, dict[int, dict[str, Any]]]: Model predictions mapping
            - gr.CheckboxGroup: AF2 predictions checkbox group
            - gr.CheckboxGroup: OpenFold predictions checkbox group
            - gr.CheckboxGroup: SoloSeq predictions checkbox group
            - gr.CheckboxGroup: Chai predictions checkbox group
            - gr.CheckboxGroup: Boltz predictions checkbox group
            - gr.CheckboxGroup: Protenix predictions checkbox group
    """
    if not api_key:
        raise gr.Error("Missing API key, please enter a valid API key")

    progress(0, desc="Starting parallel predictions...")

    # Run predictions in parallel
    model_predictions = {}

    with concurrent.futures.ThreadPoolExecutor() as executor:
        # Create a future for each model prediction
        future_to_model = {
            executor.submit(
                run_prediction, sequence, api_key, model_type, True
            ): model_type
            for model_type in model_types
        }

        # Process results as they complete
        total_models = len(model_types)
        completed = 0

        for future in concurrent.futures.as_completed(future_to_model):
            model_type = future_to_model[future]
            try:
                model_preds = future.result()
                model_predictions[model_type] = model_preds

                completed += 1
                progress(
                    completed / total_models,
                    desc=f"Completed {model_type} prediction...",
                )
            except Exception as e:
                logger.error(f"Prediction failed for {model_type}: {str(e)}")
                raise gr.Error(f"Prediction failed for {model_type}: {str(e)}")

    progress(0.9, desc="Aligning structures...")

    model_predictions = align_structures(model_predictions)

    progress(1.0, desc="Done!")

    # Create checkbox groups for each model type
    af2_predictions = gr.CheckboxGroup(
        visible=model_predictions.get(FoldingModel.AF2) is not None,
        choices=list(model_predictions.get(FoldingModel.AF2, {}).keys()),
        value=list(model_predictions.get(FoldingModel.AF2, {}).keys()),
    )
    openfold_predictions = gr.CheckboxGroup(
        visible=model_predictions.get(FoldingModel.OPENFOLD) is not None,
        choices=list(model_predictions.get(FoldingModel.OPENFOLD, {}).keys()),
        value=list(model_predictions.get(FoldingModel.OPENFOLD, {}).keys()),
    )
    solo_predictions = gr.CheckboxGroup(
        visible=model_predictions.get(FoldingModel.SOLOSEQ) is not None,
        choices=list(model_predictions.get(FoldingModel.SOLOSEQ, {}).keys()),
        value=list(model_predictions.get(FoldingModel.SOLOSEQ, {}).keys()),
    )
    chai_predictions = gr.CheckboxGroup(
        visible=model_predictions.get(FoldingModel.CHAI) is not None,
        choices=list(model_predictions.get(FoldingModel.CHAI, {}).keys()),
        value=list(model_predictions.get(FoldingModel.CHAI, {}).keys()),
    )
    boltz_predictions = gr.CheckboxGroup(
        visible=model_predictions.get(FoldingModel.BOLTZ) is not None,
        choices=list(model_predictions.get(FoldingModel.BOLTZ, {}).keys()),
        value=list(model_predictions.get(FoldingModel.BOLTZ, {}).keys()),
    )
    protenix_predictions = gr.CheckboxGroup(
        visible=model_predictions.get(FoldingModel.PROTENIX) is not None,
        choices=list(model_predictions.get(FoldingModel.PROTENIX, {}).keys()),
        value=list(model_predictions.get(FoldingModel.PROTENIX, {}).keys()),
    )

    return (
        model_predictions,
        af2_predictions,
        openfold_predictions,
        solo_predictions,
        chai_predictions,
        boltz_predictions,
        protenix_predictions,
    )