File size: 10,172 Bytes
a3f3d91
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
# -*- coding: utf-8 -*-

from . import logger
import matplotlib as mpl
mpl.use('Agg')
import matplotlib.pyplot as plt
import numpy as np
import re
import os
import warnings
import json
from os.path import join
from collections import OrderedDict

_name = "postProc"


def params():
    """
    Sets some global parameters for the plots
    :return: None
    """
    plt.rcParams['axes.facecolor'] = 'f5f5f5'
    plt.rcParams['axes.edgecolor'] = '0.45'
    plt.rcParams['axes.axisbelow'] = True
    plt.rcParams['axes.labelcolor'] = '0.45'
    plt.rcParams['text.color'] = '0.45'
    plt.rcParams['xtick.color'] = '0.45'
    plt.rcParams['ytick.color'] = '0.45'
    plt.rcParams['xtick.major.pad'] = 4
    plt.rcParams['ytick.major.pad'] = 5
    plt.rcParams['xtick.major.width'] = 1
    plt.rcParams['ytick.major.width'] = 1


def get_scores(out_file):
    """

    :param out_file: path to a csv file generated by Aggrescan3D
    :return: dictionary - {chainID:[residue ID, agg3d score, residue label]},
             dictionary - {chainID:{"min_value":val,"max_value":val,
                            "total_value":val,"avg_value":val}}
    """

    pattern = re.compile(r"^(.*),(.*),(.*),(.*),(.*)$", re.M)
    with open(out_file, 'r') as f:
        data = pattern.findall(f.read().replace("\r", ""))[1:]

    chains = set([i[1] for i in data])
    chains.add("All")
    dat = OrderedDict()
    scores = OrderedDict()
    stats = OrderedDict()
    resNumber = 1
    for chain_id in chains:
        dat[chain_id] = []
        scores[chain_id] = []
    for line in data:
        if len(line) != 5:
            continue

        chain = line[1]
        label = line[3] + line[2]  # One letter code + residue ID
        aggScore = float(line[4])
        scores[chain].append(aggScore)
        scores["All"].append(aggScore)
        if abs(aggScore) > 1e-10:  # Skip residues with 0 score
            dat[chain].append((resNumber, aggScore, label))
        dat["All"].append((resNumber, aggScore, label))

        resNumber += 1

    for chain in chains:
        min3d = min(scores[chain])
        max3d = max(scores[chain])
        sum3d = np.sum(scores[chain])
        avg3d = np.round(sum3d / len(scores[chain]), decimals=4)
        stats[chain] = {"min_value": min3d, "max_value": max3d, "total_value": sum3d, "avg_value": avg3d}
    return dat, stats


def make_plots(data=None, work_dir="", get_figure=False):
    """
    Creates png and svg plots of Aggrescan3D scores for a single chain
    :param data: dictionary - {chainID:[residue ID, agg3d score, residue label]}
    :param work_dir: directory where the plots will be saved
    :param get_figure: if set to True, will return the figure
    :return: None or plt.figure object
    """

    warnings.simplefilter("ignore")
    for chain in list(data.keys()):
        if chain != "All":
            dat = data[chain]

            params()
            fig = plt.figure(figsize=(10, 6.6))
            x = np.array([l[0] for l in dat])
            y = np.array([l[1] for l in dat])
            l = np.array([l[2] for l in dat])

            plt.xlabel("Residue")
            plt.ylabel("Score")
            plt.axhline(linewidth=1, color='0.45', linestyle='--')
            plt.xticks(x[1::10], l[1::10], rotation=35, fontsize='small')
            plt.title("A3D profile | chain " + chain)
            plt.axis(ymin=-4, ymax=4, xmin=min(x) - 2, xmax=max(x) + 2)
            plt.plot(x, y, linewidth=1.5, alpha=0.75, marker='o', mec='None')
            plt.grid(alpha=0.5, color='0.9', linewidth=1, linestyle='--')

            for x, y, l in zip(x, y, l):
                if float(y) > 0.0:
                    plt.annotate(l, xy=(x, y), xytext=(1, 1), alpha=0.5, fontsize='small', gid="label_" + str(x),
                                 textcoords='offset points')
            logger.log_file(module_name=_name,msg="Saving plots as %s.png and %s.svg" % (chain, chain))
            plt.savefig(os.path.join(work_dir, "%s.png" % chain), format="png")
            plt.savefig(os.path.join(work_dir, "%s.svg" % chain), format="svg")
            if get_figure: return fig


def make_auto_mut_plot(work_dir=""):
    """
    Create a collective plot of mutants and the wild type, this is mostly a copy paste from server plot into mpl
    #TODO actually use fig axes object rather than plt like that
    """
    _target_mutations = ["E", "K", "D", "R"]    # This should mirror one in auto_mutation but can't be imported because they also import this first
    warnings.simplefilter("ignore")
    mutants = []
    with open(join(work_dir, "Mutations_summary.csv"), "r") as f:
        f.readline()
        for line in f:
            mutants.append(line.split(",")[0])

    with open(join(work_dir, "A3D.csv"), 'r') as f:
        f.readline()  # skip the initial line with labels
        wild_labels, wild_y = [], []
        for line in f:
            a = line.strip().split(',')
            # a goes as follows: model name, chain, index, one letter code, aggrescan score
            wild_labels.append(("Chain %s" % a[1], a[2] + a[3]))
            wild_y.append(float(a[-1]))
        wild_x = [i for i in range(len(wild_y))]
    while mutants:
        data = OrderedDict()
        one_r_mutated = []
        mutated = mutants[0][0]
        for mutant in mutants[:]:   # Create a slice to prevent the iterator from skipping itmes
            if mutant[0] == mutated:
                one_r_mutated.append(mutants.pop(mutants.index(mutant)))    # Mutations are 'guaranteed' to be unique
        data["Wild_type"] = [wild_x, wild_y, wild_labels]
        for mutant in one_r_mutated:
            with open(join(work_dir, mutant + ".csv"), 'r') as f:
                f.readline()    # skip the initial line with labels
                labels, y = [], []
                for line in f:
                    a = line.strip().split(',')
                    # a goes as follows: model name, chain, index, one letter code, aggrescan score
                    labels.append(("Chain %s" % a[1], a[2]+a[3]))
                    y.append(float(a[-1]))
            x = [i for i in range(len(y))]
            data[mutant] = [x, y, labels]
        _plot(data, work_dir, filename="%s_mutants" % mutant[2:])


def _plot(data, work_dir, filename):
    params()
    fig = plt.figure(figsize=(10, 6.6))
    plt.ylabel("Score")
    plt.axhline(linewidth=1, color='0.45', linestyle='--')
    plt.title("A3D mutations profile")
    plt.grid(alpha=0.5, color='0.9', linewidth=1, linestyle='--')
    for key, value in data.items():
        x, y, labels = value
        plt.plot(x, y, label=key, linewidth=1.5, alpha=0.75, marker='o', mec='None')
    plt.xticks(x[1::10], labels[1::10], rotation=35, fontsize='small')
    logger.log_file(module_name=_name, msg="Saving auto mutation plots to %s (svg and png)" % filename)
    plt.legend(bbox_to_anchor=(1.05, 1), loc=2, borderaxespad=0.)
    plt.savefig(os.path.join(work_dir, filename + ".png"), format="png",  bbox_inches='tight')
    plt.savefig(os.path.join(work_dir, filename + ".svg"), format="svg",  bbox_inches='tight')
    plt.close()


def append_scores(a3d="", in_pdb="", out_pdb="", work_dir=""):
    """
    Replaces the last field in pdb file with Aggrescan3D score
    :param a3d: filepath to a csv aggrescan-formatted file with scores
    :param in_pdb: filepath to a input pdb file
    :param out_pdb: fielapth to which the output will be written
    :param work_dir: Output directory
    :return: None
    """
    rec = re.compile(r"^(.*),(.*),(.*),(.*),(.*)$", re.M)
    amino_a_dict ={'A': 'ALA', 'R': 'ARG','N': 'ASN','D': 'ASP','C': 'CYS','E': 'GLU',
                   'Q': 'GLN','G': 'GLY','H': 'HIS','I': 'ILE','L': 'LEU','K': 'LYS',
                   'M': 'MET','F': 'PHE','P': 'PRO','S': 'SER','T':'THR','W': 'TRP',
                   'Y': 'TYR', 'V': 'VAL','X': 'UNK'}

    with open(a3d, "r") as agg_out_fh, open(in_pdb, "r") as p:
        block = p.read()
        d = rec.findall(agg_out_fh.read().replace("\r", ""))[1:]
        for r in d:
            amino_acid = amino_a_dict[r[3]]
            agg_score = "%6.2f" % (float(r[4]))
            res_details = "%3s %1s%4s" % (amino_acid, r[1], r[2])  # 3 letter code, chain ID, res ID
            block = re.sub(r'(?<=^ATOM.{13}'+res_details+'.{34})(.*)$', agg_score, block, flags=re.M)
    logger.to_file(filename=os.path.join(work_dir, out_pdb), content=block)


def save_stats(data="", work_dir="", output="statistics"):
    """
    Saves statistcs of the Aggrescan3D scores calculations
    :param data: string - JSON generated by get_scores, formatted like:
    {chainID:{"min_value":val,"max_value":val,"total_value":val,"avg_value":val}}
    :param work_dir: Output directory
    :param output: outputs filename
    :return: None
    """
    logger.to_file(filename=os.path.join(work_dir, output), content=data)


def prepare_output(work_dir="", final=True, model_name="", scores_to_pdb=False, get_data=False):
    """
    Calls make_plots, save_stats and append_scores, see details there
    :param work_dir: Working dir of Aggrescan3D run
    :param final: [bool] if True data is plotted and output.pdb generated to work_dir
    :param model_name: [string] filename of the currently analyzed pdb file (without the .pdb part)
    :param scores_to_pdb: [bool] Decide if a3d score should be pun in the file's bfactor place
    :return: dictionary - {chainID: {"min_value" : val, "max_value" : val,
                           "total_value" : val, "avg_value" : val}}
    """
    data, stats = get_scores(os.path.join(work_dir, "A3D.csv"))
    save_stats(data=json.dumps(stats), output=model_name + "_stats", work_dir=work_dir)
    if scores_to_pdb:
        append_scores(a3d=os.path.join(work_dir, "A3D.csv"), in_pdb=model_name + ".pdb",
                      out_pdb=model_name+".pdb", work_dir=work_dir)
    if final:
        make_plots(data=data, work_dir=work_dir)
        append_scores(a3d=os.path.join(work_dir, "A3D.csv"), in_pdb=os.path.join(work_dir, "folded.pdb"),
                      out_pdb=os.path.join(work_dir, "output.pdb"), work_dir=work_dir)
    if get_data:
        return data, stats
    return stats