File size: 12,103 Bytes
b8a625b f601557 6187a64 b8a625b f601557 e967c14 6187a64 f601557 6187a64 e967c14 f601557 6187a64 b8a625b 6187a64 b8a625b 6187a64 b8a625b 6187a64 b8a625b 6187a64 b8a625b 354bfc2 b8a625b 6187a64 b8a625b 354bfc2 6187a64 b8a625b f601557 6187a64 f601557 6187a64 f601557 6187a64 b8a625b f601557 6187a64 b8a625b 6187a64 b8a625b 142035a 354bfc2 142035a e967c14 142035a f601557 142035a f601557 142035a f601557 142035a 354bfc2 142035a e967c14 6187a64 e967c14 142035a 354bfc2 6187a64 354bfc2 6187a64 e967c14 6187a64 e967c14 6187a64 e967c14 354bfc2 142035a f601557 e967c14 354bfc2 142035a 6187a64 e967c14 6187a64 e967c14 142035a e967c14 354bfc2 e967c14 6187a64 354bfc2 e967c14 6187a64 f601557 142035a f601557 b8a625b 354bfc2 b8a625b 142035a b8a625b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 |
"""Folding Studio Demo App."""
import logging
import gradio as gr
import pandas as pd
import plotly.graph_objects as go
from folding_studio_data_models import FoldingModel
from gradio_molecule3d import Molecule3D
from folding_studio_demo.correlate import (
SCORE_COLUMN_NAMES,
SCORE_COLUMNS,
compute_correlation_data,
fake_predict_and_correlate,
get_score_description,
make_regression_plot,
plot_correlation_ranking,
)
from folding_studio_demo.predict import filter_predictions, predict, predict_comparison
logger = logging.getLogger(__name__)
MOLECULE_REPS = [
{
"model": 0,
# "chain": "",
# "resname": "",
"style": "cartoon",
"color": "alphafold",
# "residue_range": "",
"around": 0,
"byres": False,
# "visible": False,
# "opacity": 0.5
}
]
MODEL_CHOICES = [
# ("AlphaFold2", FoldingModel.AF2),
# ("OpenFold", FoldingModel.OPENFOLD),
# ("SoloSeq", FoldingModel.SOLOSEQ),
("Boltz-1", FoldingModel.BOLTZ),
("Chai-1", FoldingModel.CHAI),
("Protenix", FoldingModel.PROTENIX),
]
DEFAULT_SEQ = "MALWMRLLPLLALLALWGPDPAAA"
MODEL_EXAMPLES = {
FoldingModel.BOLTZ: [
["Monomer", f">A|protein\n{DEFAULT_SEQ}"],
["Multimer", f">A|protein\n{DEFAULT_SEQ}\n>B|protein\n{DEFAULT_SEQ}"],
],
FoldingModel.CHAI: [
["Monomer", f">protein|name=A\n{DEFAULT_SEQ}"],
["Multimer", f">protein|name=A\n{DEFAULT_SEQ}\n>protein|name=B\n{DEFAULT_SEQ}"],
],
FoldingModel.PROTENIX: [
["Monomer", f">A|protein\n{DEFAULT_SEQ}"],
["Multimer", f">A|protein\n{DEFAULT_SEQ}\n>B|protein\n{DEFAULT_SEQ}"],
],
}
def sequence_input(dropdown: gr.Dropdown | None = None) -> gr.Textbox:
"""Sequence input component.
Returns:
gr.Textbox: Sequence input component
"""
sequence = gr.Textbox(
label="Protein Sequence",
lines=2,
placeholder="Enter a protein sequence or upload a FASTA file",
)
dummy = gr.Textbox(label="Complex type", visible=False)
examples = gr.Examples(
examples=MODEL_EXAMPLES[FoldingModel.BOLTZ],
inputs=[dummy, sequence],
)
if dropdown is not None:
dropdown.change(
fn=lambda x: gr.Dataset(samples=MODEL_EXAMPLES[x]),
inputs=[dropdown],
outputs=[examples.dataset],
)
file_input = gr.File(
label="Upload a FASTA file",
file_types=[".fasta", ".fa"],
)
def _process_file(file: gr.File | None) -> gr.Textbox:
if file is None:
return gr.Textbox()
try:
with open(file.name, "r") as f:
content = f.read().strip()
return gr.Textbox(value=content)
except Exception as e:
logger.error(f"Error reading file: {e}")
return gr.Textbox()
file_input.change(fn=_process_file, inputs=[file_input], outputs=[sequence])
return sequence
def simple_prediction(api_key: str) -> None:
"""Simple prediction tab.
Args:
api_key (str): Folding Studio API key
"""
gr.Markdown(
"""
### Predict a Protein Structure
It will be run in the background and the results will be displayed in the output section.
The output will contain the protein structure and the pLDDT plot.
Select a model to run the inference with and enter a protein sequence or upload a FASTA file.
"""
)
with gr.Row():
dropdown = gr.Dropdown(
label="Model",
choices=MODEL_CHOICES,
scale=0,
value=FoldingModel.BOLTZ,
)
with gr.Column():
sequence = sequence_input(dropdown)
predict_btn = gr.Button(
"Predict",
elem_classes="gradient-button",
elem_id="predict-btn",
variant="primary",
)
with gr.Row():
mol_output = Molecule3D(label="Protein Structure", reps=MOLECULE_REPS)
metrics_plot = gr.Plot(label="pLDDT")
predict_btn.click(
fn=predict,
inputs=[sequence, api_key, dropdown],
outputs=[mol_output, metrics_plot],
)
def model_comparison(api_key: str) -> None:
"""Model comparison tab.
Args:
api_key (str): Folding Studio API key
"""
with gr.Row():
models = gr.CheckboxGroup(
label="Model",
choices=MODEL_CHOICES,
scale=0,
min_width=300,
value=[FoldingModel.BOLTZ, FoldingModel.CHAI, FoldingModel.PROTENIX],
)
with gr.Column():
sequence = sequence_input()
predict_btn = gr.Button(
"Compare Models",
elem_classes=["gradient-button"],
elem_id="compare-models-btn",
variant="primary",
)
with gr.Row():
chai_predictions = gr.CheckboxGroup(label="Chai", visible=False)
protenix_predictions = gr.CheckboxGroup(label="Protenix", visible=False)
boltz_predictions = gr.CheckboxGroup(label="Boltz", visible=False)
with gr.Row():
mol_outputs = Molecule3D(
label="Protein Structure", reps=MOLECULE_REPS, height=1000
)
metrics_plot = gr.Plot(label="pLDDT")
# Store the initial predictions
aligned_paths = gr.State()
plddt_fig = gr.State()
predict_btn.click(
fn=predict_comparison,
inputs=[sequence, api_key, models],
outputs=[
chai_predictions,
boltz_predictions,
protenix_predictions,
aligned_paths,
plddt_fig,
],
)
# Handle checkbox changes
for checkbox in [chai_predictions, boltz_predictions, protenix_predictions]:
checkbox.change(
fn=filter_predictions,
inputs=[
aligned_paths,
plddt_fig,
chai_predictions,
boltz_predictions,
protenix_predictions,
],
outputs=[mol_outputs, metrics_plot],
)
def create_correlation_tab():
gr.Markdown("# Correlation with experimental binding affinity data")
gr.Markdown("""
This analysis explores the relationship between protein folding model confidence scores and experimental binding affinity data.
The experimental dataset contains binding affinity measurements (KD in nM) between antibody-antigen pairs.
Each data point includes:
- The antibody's light and heavy chain sequences
- The antigen sequence
- The experimental KD value
The analysis involves submitting these sequences to protein folding models for 3D structure prediction.
The models generate various confidence scores for each prediction. These scores are then correlated
with the experimental binding affinity measurements to evaluate their effectiveness as predictors
of binding strength.
""")
spr_data_with_scores = pd.read_csv("spr_af_scores_mapped.csv")
spr_data_with_scores = spr_data_with_scores.rename(columns=SCORE_COLUMN_NAMES)
prettified_columns = {
"antibody_name": "Antibody Name",
"KD (nM)": "KD (nM)",
"antibody_vh_sequence": "Antibody VH Sequence",
"antibody_vl_sequence": "Antibody VL Sequence",
"antigen_sequence": "Antigen Sequence",
}
spr_data_with_scores = spr_data_with_scores.rename(columns=prettified_columns)
with gr.Row():
columns = [
"Antibody Name",
"KD (nM)",
"Antibody VH Sequence",
"Antibody VL Sequence",
"Antigen Sequence",
]
# Display dataframe with floating point values rounded to 2 decimal places
spr_data = gr.DataFrame(
value=spr_data_with_scores[columns].round(2),
label="Experimental Antibody-Antigen Binding Affinity Data",
)
gr.Markdown("# Prediction and correlation")
with gr.Row():
fake_predict_btn = gr.Button(
"Predict structures of all complexes",
elem_classes="gradient-button",
variant="primary",
)
with gr.Row():
prediction_dataframe = gr.Dataframe(label="Predicted Structures Data")
with gr.Row():
with gr.Row():
correlation_type = gr.Radio(
choices=["Spearman", "Pearson", "RΒ²"],
value="Spearman",
label="Correlation Type",
interactive=True,
)
with gr.Row():
correlation_ranking_plot = gr.Plot(label="Correlation ranking")
with gr.Row():
with gr.Column():
with gr.Row():
# User can select the columns to display in the correlation plot
correlation_column = gr.Dropdown(
label="Score data to display",
choices=SCORE_COLUMNS,
multiselect=False,
value=SCORE_COLUMNS[0],
)
# Add checkbox for log scale and update plot when either input changes
with gr.Row():
log_scale = gr.Checkbox(
label="Display x-axis on logarithmic scale", value=False
)
with gr.Row():
score_description = gr.Markdown(
get_score_description(correlation_column.value)
)
correlation_column.change(
fn=lambda x: get_score_description(x),
inputs=correlation_column,
outputs=score_description,
)
with gr.Column():
correlation_plot = gr.Plot(label="Correlation with binding affinity")
fake_predict_btn.click(
fn=lambda x: fake_predict_and_correlate(
spr_data_with_scores, SCORE_COLUMNS, ["Antibody Name", "KD (nM)"]
),
inputs=[correlation_type],
outputs=[prediction_dataframe, correlation_ranking_plot, correlation_plot],
)
def update_regression_plot(score, use_log):
return make_regression_plot(spr_data_with_scores, score, use_log)
def update_correlation_plot(correlation_type):
logger.info(f"Updating correlation plot for {correlation_type}")
corr_data = compute_correlation_data(spr_data_with_scores, SCORE_COLUMNS)
logger.info(f"Correlation data: {corr_data}")
return plot_correlation_ranking(corr_data, correlation_type)
correlation_column.change(
fn=update_regression_plot,
inputs=[correlation_column, log_scale],
outputs=correlation_plot,
)
correlation_type.change(
fn=update_correlation_plot,
inputs=[correlation_type],
outputs=correlation_ranking_plot,
)
log_scale.change(
fn=update_regression_plot,
inputs=[correlation_column, log_scale],
outputs=correlation_plot,
)
def __main__():
theme = gr.themes.Ocean(
primary_hue="blue",
secondary_hue="purple",
)
with gr.Blocks(theme=theme, title="Folding Studio Demo") as demo:
gr.Markdown(
"""
# Folding Studio: Harness the Power of Protein Folding π§¬
Folding Studio is a platform for protein structure prediction.
It uses the latest AI-powered folding models to predict the structure of a protein.
Available models are : AlphaFold2, OpenFold, SoloSeq, Boltz-1, Chai and Protenix.
## API Key
To use the Folding Studio API, you need to provide an API key.
You can get your API key by asking to the Folding Studio team.
"""
)
api_key = gr.Textbox(label="Folding Studio API Key", type="password")
gr.Markdown("## Demo Usage")
with gr.Tab("π Simple Prediction"):
simple_prediction(api_key)
with gr.Tab("π Model Comparison"):
model_comparison(api_key)
with gr.Tab("π Correlations"):
create_correlation_tab()
demo.launch()
|