File size: 7,197 Bytes
b26b7a0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
"""Models for the Folding Studio API."""

import logging
import os
from pathlib import Path
from typing import Any

import gradio as gr
import numpy as np
from folding_studio.client import Client
from folding_studio.query import Query
from folding_studio.query.boltz import BoltzQuery
from folding_studio.query.chai import ChaiQuery
from folding_studio.query.protenix import ProtenixQuery

from folding_studio_demo.model_fasta_validators import (
    BaseFastaValidator,
    BoltzFastaValidator,
    ChaiFastaValidator,
    ProtenixFastaValidator,
)

logger = logging.getLogger(__name__)


class AF3Model:
    def __init__(
        self, api_key: str, model_name: str, query: Query, validator: BaseFastaValidator
    ):
        self.api_key = api_key
        self.model_name = model_name
        self.query = query
        self.validator = validator

    def call(
        self, seq_file: Path | str, output_dir: Path, format_fasta: bool = False
    ) -> None:
        """Predict protein structure from amino acid sequence using AF3 model.

        Args:
            seq_file (Path | str): Path to FASTA file containing amino acid sequence
            output_dir (Path): Path to output directory
            format_description (bool): Whether to format the description of the sequence
        """
        # Validate FASTA format before calling
        is_valid, error_msg = self.check_file_description(seq_file)
        if format_fasta and not is_valid:
            logger.info("Invalid FASTA file format, forcing formatting...")
            self.format_fasta(seq_file)
        elif not is_valid:
            logger.error(error_msg)
            raise gr.Error(error_msg)

        # Create a client using API key
        logger.info("Authenticating client with API key")
        client = Client.from_api_key(api_key=self.api_key)

        # Define query
        query: Query = self.query.from_file(path=seq_file, query_name="gradio")
        query.save_parameters(output_dir)

        logger.info("Payload: %s", query.payload)

        # Send a request
        logger.info(f"Sending {self.model_name} request to Folding Studio API")
        response = client.send_request(
            query, project_code=os.environ["FOLDING_PROJECT_CODE"]
        )

        # Access confidence data
        logger.info("Confidence data: %s", response.confidence_data)

        response.download_results(output_dir=output_dir, force=True, unzip=True)
        logger.info("Results downloaded to %s", output_dir)

    def format_fasta(self, seq_file: Path | str) -> None:
        """Format sequence to FASTA format.

        Args:
            seq_file (Path | str): Path to FASTA file
        """
        formatted_fasta = self.validator.transform_fasta(seq_file)
        with open(seq_file, "w") as f:
            f.write(formatted_fasta)

    def predictions(self, output_dir: Path) -> list[Path]:
        """Get the path to the prediction.

        Args:
            output_dir (Path): Path to output directory

        Returns:
            list[Path]: List of paths to predictions
        """
        raise NotImplementedError()

    def has_prediction(self, output_dir: Path) -> bool:
        """Check if prediction exists in output directory."""
        return len(self.predictions(output_dir)) > 0

    def check_file_description(self, seq_file: Path | str) -> tuple[bool, str | None]:
        """Check if the file description is correct.

        Args:
            seq_file (Path | str): Path to FASTA file

        Returns:
            tuple[bool, str | None]: Tuple containing a boolean indicating if the format is correct and an error message if not
        """

        is_valid, error_msg = self.validator.is_valid_fasta(seq_file)
        if not is_valid:
            return False, error_msg

        return True, None


class ChaiModel(AF3Model):
    def __init__(self, api_key: str):
        super().__init__(api_key, "Chai", ChaiQuery, ChaiFastaValidator())

    def call(
        self, seq_file: Path | str, output_dir: Path, format_fasta: bool = False
    ) -> None:
        """Predict protein structure from amino acid sequence using Chai model.

        Args:
            seq_file (Path | str): Path to FASTA file containing amino acid sequence
            output_dir (Path): Path to output directory
            format_fasta (bool): Whether to format the FASTA file
        """
        super().call(seq_file, output_dir, format_fasta)

    def predictions(self, output_dir: Path) -> dict[Path, dict[str, Any]]:
        """Get the path to the prediction."""
        prediction = next(output_dir.rglob("pred.model_idx_[0-9].cif"), None)
        if prediction is None:
            return {}

        cif_files = {
            int(f.stem.split("model_idx_")[1]): f
            for f in prediction.parent.glob("pred.model_idx_*.cif")
        }

        # Get all npz files and extract their indices
        npz_files = {
            int(f.stem.split("model_idx_")[1]): f
            for f in prediction.parent.glob("scores.model_idx_*.npz")
        }

        # Find common indices and create pairs
        common_indices = sorted(set(cif_files.keys()) & set(npz_files.keys()))

        return {
            idx: {"prediction_path": cif_files[idx], "metrics": np.load(npz_files[idx])}
            for idx in common_indices
        }


class ProtenixModel(AF3Model):
    def __init__(self, api_key: str):
        super().__init__(api_key, "Protenix", ProtenixQuery, ProtenixFastaValidator())

    def call(
        self, seq_file: Path | str, output_dir: Path, format_fasta: bool = False
    ) -> None:
        """Predict protein structure from amino acid sequence using Protenix model.

        Args:
            seq_file (Path | str): Path to FASTA file containing amino acid sequence
            output_dir (Path): Path to output directory
            format_fasta (bool): Whether to format the FASTA file
        """
        super().call(seq_file, output_dir, format_fasta)

    def predictions(self, output_dir: Path) -> list[Path]:
        """Get the path to the prediction."""
        return list(output_dir.rglob("*_model_[0-9].cif"))


class BoltzModel(AF3Model):
    def __init__(self, api_key: str):
        super().__init__(api_key, "Boltz", BoltzQuery, BoltzFastaValidator())

    def call(
        self, seq_file: Path | str, output_dir: Path, format_fasta: bool = False
    ) -> None:
        """Predict protein structure from amino acid sequence using Boltz model.

        Args:
            seq_file (Path | str): Path to FASTA file containing amino acid sequence
            output_dir (Path): Path to output directory
            format_fasta (bool): Whether to format the FASTA file
        """

        super().call(seq_file, output_dir, format_fasta)

    def predictions(self, output_dir: Path) -> list[Path]:
        """Get the path to the prediction."""
        prediction_paths = list(output_dir.rglob("*_model_[0-9].cif"))
        return {
            int(cif_path.stem[-1]): {
                "prediction_path": cif_path,
                "metrics": np.load(list(cif_path.parent.glob("plddt_*.npz"))[0]),
            }
            for cif_path in prediction_paths
        }