File size: 14,347 Bytes
b8a625b
 
 
 
f601557
b8a625b
 
 
 
 
 
f601557
b8a625b
 
b26b7a0
b8a625b
 
 
 
 
 
 
 
 
b26b7a0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b8a625b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b26b7a0
 
 
 
 
b8a625b
b26b7a0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f601557
 
b8a625b
 
b26b7a0
b8a625b
 
 
 
 
b26b7a0
b8a625b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f601557
 
 
 
 
 
 
b8a625b
 
 
 
 
 
f601557
 
 
b26b7a0
f601557
b26b7a0
f601557
 
 
 
 
 
 
 
 
 
b26b7a0
 
f601557
b26b7a0
b8a625b
 
b26b7a0
 
 
 
 
 
 
b8a625b
 
 
 
 
 
b26b7a0
 
b8a625b
 
 
 
f601557
 
b8a625b
b26b7a0
b8a625b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b26b7a0
 
b8a625b
b26b7a0
b8a625b
 
b26b7a0
b8a625b
 
b26b7a0
b8a625b
 
 
 
f601557
 
 
b26b7a0
 
 
 
 
 
f601557
b26b7a0
 
f601557
 
 
 
 
b26b7a0
f601557
 
b26b7a0
 
 
 
 
 
 
f601557
b26b7a0
 
 
f601557
 
 
 
b8a625b
f601557
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b26b7a0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f601557
b26b7a0
 
 
 
 
 
 
 
 
 
 
 
f601557
 
 
 
b26b7a0
 
f601557
 
b26b7a0
 
 
 
 
 
 
 
 
f601557
 
 
 
 
 
b26b7a0
 
 
 
 
 
 
 
 
f601557
b26b7a0
 
b8a625b
b26b7a0
f601557
b26b7a0
 
 
 
 
 
 
 
 
b8a625b
b26b7a0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
"""Predict protein structure using Folding Studio."""

import hashlib
import logging
from io import StringIO
from pathlib import Path

import gradio as gr
import numpy as np
import plotly.graph_objects as go
from Bio import SeqIO
from Bio.PDB import PDBIO, MMCIFParser, PDBParser, Superimposer
from folding_studio_data_models import FoldingModel

from folding_studio_demo.models import BoltzModel, ChaiModel, ProtenixModel

logger = logging.getLogger(__name__)

SEQUENCE_DIR = Path("sequences")
SEQUENCE_DIR.mkdir(parents=True, exist_ok=True)

OUTPUT_DIR = Path("output")
OUTPUT_DIR.mkdir(parents=True, exist_ok=True)

THREE_TO_ONE_LETTER = {
    "ALA": "A",
    "ARG": "R",
    "ASN": "N",
    "ASP": "D",
    "CYS": "C",
    "GLN": "Q",
    "GLU": "E",
    "GLY": "G",
    "HIS": "H",
    "ILE": "I",
    "LEU": "L",
    "LYS": "K",
    "MET": "M",
    "PHE": "F",
    "PRO": "P",
    "SER": "S",
    "THR": "T",
    "TRP": "W",
    "TYR": "Y",
    "VAL": "V",
    "SEC": "U",
    "PYL": "O",
    "ASX": "B",
    "GLX": "Z",
    "XAA": "X",
    "XLE": "J",
    "UNK": "X",
}


def convert_to_one_letter(resname: str) -> str:
    """Convert three-letter amino acid code to one-letter code.

    Args:
        resname (str): Three-letter amino acid code

    Returns:
        str: One-letter amino acid code
    """
    return THREE_TO_ONE_LETTER.get(resname, "X")


def convert_cif_to_pdb(cif_path: str, pdb_path: str) -> None:
    """Convert a .cif file to .pdb format using Biopython.

    Args:
        cif_path (str): Path to input .cif file
        pdb_path (str): Path to output .pdb file
    """
    # Parse the CIF file
    parser = MMCIFParser()
    structure = parser.get_structure("structure", cif_path)

    # Save as PDB
    io = PDBIO()
    io.set_structure(structure)
    io.save(pdb_path)


def create_plddt_figure(
    plddt_vals: list[list[float]],
    model_name: str,
    residue_codes: list[list[str]] = None,
) -> go.Figure:
    """Create a plot of metrics."""
    plddt_traces = []
    for i, plddt_val in enumerate(plddt_vals):
        # Create hover text with residue codes if available
        if residue_codes and i < len(residue_codes):
            hover_text = [
                f"<i>pLDDT</i>: {plddt:.2f}<br><i>Residue:</i> {code} {idx}"
                for idx, (plddt, code) in enumerate(zip(plddt_val, residue_codes[i]))
            ]
        else:
            hover_text = [
                f"<i>pLDDT</i>: {plddt:.2f}<br><i>Residue index:</i> {idx}"
                for idx, plddt in enumerate(plddt_val)
            ]

        plddt_traces.append(
            go.Scatter(
                x=np.arange(len(plddt_val)),
                y=plddt_val,
                hovertemplate="%{text}<extra></extra>",
                text=hover_text,
                name=f"{model_name} {i}",
                visible=True,
            )
        )
    plddt_fig = go.Figure(data=plddt_traces)
    plddt_fig.update_layout(
        title="pLDDT",
        xaxis_title="Residue",
        yaxis_title="pLDDT",
        height=500,
        template="simple_white",
        legend=dict(yanchor="bottom", y=0.01, xanchor="left", x=0.99),
    )

    return plddt_fig


def _write_fasta_file(
    sequence: str, directory: Path = SEQUENCE_DIR
) -> tuple[str, Path]:
    """Write sequence to FASTA file.

    Args:
        sequence (str): Sequence to write to FASTA file
        directory (Path): Directory to write FASTA file to (default: SEQUENCE_DIR)

    Returns:
        tuple[str, Path]: Tuple containing the sequence ID and the path to the FASTA file
    """
    input_rep = list(SeqIO.parse(StringIO(sequence), "fasta"))
    if not input_rep:
        raise gr.Error("No sequence found")

    seq_id = hashlib.sha256(
        "_".join([str(records.seq) for records in input_rep]).encode()
    ).hexdigest()
    seq_file = directory / f"sequence_{seq_id}.fasta"
    with open(seq_file, "w") as f:
        f.write(sequence)
    return seq_id, seq_file


def extract_plddt_from_cif(cif_path):
    structure = MMCIFParser().get_structure("structure", cif_path)

    # Lists to store pLDDT values and residue codes
    plddt_values = []
    residue_codes = []

    # Iterate through all atoms
    for model in structure:
        for chain in model:
            for residue in chain:
                # Get the first atom of each residue (usually CA atom)
                if "CA" in residue:
                    # The B-factor contains the pLDDT value
                    plddt = residue["CA"].get_bfactor()
                    plddt_values.append(plddt)
                    # Get residue code and convert to one-letter code
                    residue_codes.append(convert_to_one_letter(residue.get_resname()))

    return plddt_values, residue_codes


def predict(
    sequence: str,
    api_key: str,
    model_type: FoldingModel,
    format_fasta: bool = False,
    progress=gr.Progress(),
) -> tuple[str, str]:
    """Predict protein structure from amino acid sequence using Boltz model.

    Args:
        sequence (str): Amino acid sequence to predict structure for
        api_key (str): Folding API key
        model (FoldingModel): Folding model to use
        format_fasta (bool): Whether to format the FASTA file
        progress (gr.Progress): Gradio progress tracker

    Returns:
        tuple[str, str]: Tuple containing the path to the PDB file and the pLDDT plot
    """
    if not api_key:
        raise gr.Error("Missing API key, please enter a valid API key")

    progress(0, desc="Setting up prediction...")
    # Set up unique output directory based on sequence hash
    seq_id, seq_file = _write_fasta_file(sequence)
    output_dir = OUTPUT_DIR / seq_id / model_type
    output_dir.mkdir(parents=True, exist_ok=True)

    if model_type == FoldingModel.BOLTZ:
        model = BoltzModel(api_key)
    elif model_type == FoldingModel.CHAI:
        model = ChaiModel(api_key)
    elif model_type == FoldingModel.PROTENIX:
        model = ProtenixModel(api_key)
    else:
        raise ValueError(f"Model {model_type} not supported")

    # Check if prediction already exists
    if not model.has_prediction(output_dir):
        progress(0.2, desc="Running prediction...")
        # Run prediction
        logger.info(f"Predicting {seq_id}")
        model.call(seq_file=seq_file, output_dir=output_dir, format_fasta=format_fasta)
        logger.info("Prediction done. Output directory: %s", output_dir)
    else:
        progress(0.2, desc="Using existing prediction...")
        logger.info("Prediction already exists. Output directory: %s", output_dir)

    progress(0.4, desc="Processing results...")
    # Convert output CIF to PDB
    if not model.has_prediction(output_dir):
        raise gr.Error("No prediction found")

    predictions = model.predictions(output_dir)
    pdb_paths = []
    model_plddt_vals = []
    model_residue_codes = []

    total_predictions = len(predictions)
    for i, (model_idx, prediction) in enumerate(predictions.items()):
        progress(
            0.4 + (0.4 * i / total_predictions), desc=f"Converting model {model_idx}..."
        )
        cif_path = prediction["prediction_path"]
        logger.info(f"CIF file: {cif_path}")

        converted_pdb_path = str(
            output_dir / f"{model.model_name}_prediction_{model_idx}.pdb"
        )
        convert_cif_to_pdb(str(cif_path), str(converted_pdb_path))
        plddt_vals, residue_codes = extract_plddt_from_cif(cif_path)
        pdb_paths.append(converted_pdb_path)
        model_plddt_vals.append(plddt_vals)
        model_residue_codes.append(residue_codes)

    progress(0.8, desc="Generating plots...")
    plddt_fig = create_plddt_figure(
        plddt_vals=model_plddt_vals,
        model_name=model.model_name,
        residue_codes=model_residue_codes,
    )

    progress(1.0, desc="Done!")
    return pdb_paths, plddt_fig


def align_structures(pdb_paths: list[str]) -> list[str]:
    """Align multiple PDB structures to the first structure.

    Args:
        pdb_paths (list[str]): List of paths to PDB files to align

    Returns:
        list[str]: List of paths to aligned PDB files
    """

    parser = PDBParser()
    io = PDBIO()

    # Parse the reference structure (first one)
    ref_structure = parser.get_structure("reference", pdb_paths[0])
    ref_atoms = [atom for atom in ref_structure.get_atoms() if atom.get_name() == "CA"]

    aligned_paths = [pdb_paths[0]]  # First structure is already aligned

    # Align each subsequent structure to the reference
    for i, pdb_path in enumerate(pdb_paths[1:], start=1):
        # Parse the structure to align
        structure = parser.get_structure(f"model_{i}", pdb_path)
        atoms = [atom for atom in structure.get_atoms() if atom.get_name() == "CA"]

        # Create superimposer
        sup = Superimposer()

        # Set the reference and moving atoms
        sup.set_atoms(ref_atoms, atoms)

        # Apply the transformation to all atoms in the structure
        sup.apply(structure.get_atoms())

        # Save the aligned structure
        aligned_path = str(Path(pdb_path).parent / f"aligned_{Path(pdb_path).name}")
        io.set_structure(structure)
        io.save(aligned_path)
        aligned_paths.append(aligned_path)

    return aligned_paths


def filter_predictions(
    aligned_paths: list[str],
    plddt_fig: go.Figure,
    chai_selected: list[int],
    boltz_selected: list[int],
    protenix_selected: list[int],
) -> tuple[list[str], go.Figure]:
    """Filter predictions based on selected checkboxes.

    Args:
        aligned_paths (list[str]): List of aligned PDB paths
        plddt_fig (go.Figure): Original pLDDT plot
        chai_selected (list[int]): Selected Chai model indices
        boltz_selected (list[int]): Selected Boltz model indices
        protenix_selected (list[int]): Selected Protenix model indices
        model_predictions (dict[FoldingModel, list[int]]): Dictionary mapping models to their prediction indices

    Returns:
        tuple[list[str], go.Figure]: Filtered PDB paths and updated pLDDT plot
    """
    # Create a new figure with only selected traces
    filtered_fig = go.Figure()

    # Keep track of which traces to show
    visible_paths = []

    # Helper function to check if a trace should be visible
    def should_show_trace(trace_name: str) -> bool:
        model_name = trace_name.split()[0]
        model_idx = int(trace_name.split()[1])

        if model_name == "Chai" and model_idx in chai_selected:
            return True
        if model_name == "Boltz" and model_idx in boltz_selected:
            return True
        if model_name == "Protenix" and model_idx in protenix_selected:
            return True
        return False

    # Filter traces and paths
    for i, trace in enumerate(plddt_fig.data):
        if should_show_trace(trace.name):
            filtered_fig.add_trace(trace)
            visible_paths.append(aligned_paths[i])

    # Update layout
    filtered_fig.update_layout(
        title="pLDDT",
        xaxis_title="Residue index",
        yaxis_title="pLDDT",
        height=500,
        template="simple_white",
        legend=dict(yanchor="bottom", y=0.01, xanchor="left", x=0.99),
    )

    return visible_paths, filtered_fig


def predict_comparison(
    sequence: str, api_key: str, model_types: list[FoldingModel], progress=gr.Progress()
) -> tuple[
    list[str],
    go.Figure,
    gr.CheckboxGroup,
    gr.CheckboxGroup,
    gr.CheckboxGroup,
    list[str],
    go.Figure,
    dict,
]:
    """Predict protein structure from amino acid sequence using multiple models.

    Args:
        sequence (str): Amino acid sequence to predict structure for
        api_key (str): Folding API key
        model_types (list[FoldingModel]): List of folding models to use
        progress (gr.Progress): Gradio progress tracker

    Returns:
        tuple containing:
            - list[str]: Aligned PDB paths
            - go.Figure: pLDDT plot
            - gr.CheckboxGroup: Chai predictions checkbox group
            - gr.CheckboxGroup: Boltz predictions checkbox group
            - gr.CheckboxGroup: Protenix predictions checkbox group
            - list[str]: Original PDB paths
            - go.Figure: Original pLDDT plot
            - dict: Model predictions mapping
    """
    if not api_key:
        raise gr.Error("Missing API key, please enter a valid API key")

    # Set up unique output directory based on sequence hash
    pdb_paths = []
    plddt_traces = []
    total_models = len(model_types)
    model_predictions = {}

    for i, model_type in enumerate(model_types):
        progress(i / total_models, desc=f"Running {model_type} prediction...")
        model_pdb_paths, model_plddt_traces = predict(
            sequence, api_key, model_type, format_fasta=True
        )
        pdb_paths += model_pdb_paths
        plddt_traces += model_plddt_traces.data
        model_predictions[model_type] = [int(Path(p).stem[-1]) for p in model_pdb_paths]

    progress(0.9, desc="Aligning structures...")
    aligned_paths = align_structures(pdb_paths)
    plddt_fig = go.Figure(data=plddt_traces)
    plddt_fig.update_layout(
        title="pLDDT",
        xaxis_title="Residue index",
        yaxis_title="pLDDT",
        height=500,
        template="simple_white",
        legend=dict(yanchor="bottom", y=0.01, xanchor="left", x=0.99),
    )

    progress(1.0, desc="Done!")

    # Create checkbox groups for each model type
    chai_predictions = gr.CheckboxGroup(
        visible=model_predictions.get(FoldingModel.CHAI) is not None,
        choices=model_predictions.get(FoldingModel.CHAI, []),
        value=model_predictions.get(FoldingModel.CHAI, []),
    )
    boltz_predictions = gr.CheckboxGroup(
        visible=model_predictions.get(FoldingModel.BOLTZ) is not None,
        choices=model_predictions.get(FoldingModel.BOLTZ, []),
        value=model_predictions.get(FoldingModel.BOLTZ, []),
    )
    protenix_predictions = gr.CheckboxGroup(
        visible=model_predictions.get(FoldingModel.PROTENIX) is not None,
        choices=model_predictions.get(FoldingModel.PROTENIX, []),
        value=model_predictions.get(FoldingModel.PROTENIX, []),
    )

    return (
        chai_predictions,
        boltz_predictions,
        protenix_predictions,
        aligned_paths,
        plddt_fig,
    )