File size: 14,394 Bytes
b8a625b
 
 
 
 
f601557
b26b7a0
b8a625b
 
 
f601557
e967c14
b26b7a0
 
f601557
b26b7a0
e967c14
 
f601557
b26b7a0
b8a625b
 
 
 
 
 
 
b26b7a0
 
b8a625b
 
 
 
 
 
 
 
 
 
 
 
6354ea8
 
b8a625b
 
 
 
 
 
b26b7a0
 
6354ea8
 
 
 
 
 
 
 
 
b26b7a0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b8a625b
 
 
 
 
6354ea8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b26b7a0
 
 
 
 
 
 
b8a625b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6354ea8
b8a625b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b26b7a0
b8a625b
354bfc2
 
 
 
 
 
b8a625b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6354ea8
 
 
b8a625b
6354ea8
 
 
 
 
 
 
 
 
b8a625b
b26b7a0
b8a625b
 
 
 
 
 
 
 
 
354bfc2
 
 
 
 
 
b26b7a0
6354ea8
 
 
b26b7a0
 
 
b8a625b
f601557
b26b7a0
f601557
b26b7a0
f601557
b26b7a0
6354ea8
b8a625b
 
f601557
 
b26b7a0
6354ea8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b26b7a0
 
 
 
6354ea8
b8a625b
 
b26b7a0
6354ea8
 
 
 
 
 
 
 
b26b7a0
 
 
6354ea8
 
 
 
b26b7a0
 
 
 
 
 
 
b8a625b
142035a
 
354bfc2
 
 
 
 
 
 
 
 
 
 
 
 
 
142035a
e967c14
142035a
f601557
 
 
 
 
 
142035a
6354ea8
 
 
 
 
 
 
 
 
 
 
 
142035a
 
6354ea8
 
 
 
 
 
 
 
 
 
 
 
 
 
6255fd6
59d012b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6255fd6
6354ea8
59d012b
6354ea8
 
 
 
 
 
 
 
 
 
 
 
 
 
e967c14
354bfc2
bf6f326
142035a
 
6255fd6
 
 
 
 
 
f601557
e967c14
6255fd6
 
 
 
 
 
 
142035a
b26b7a0
6eb5348
e967c14
 
 
6eb5348
 
 
e967c14
142035a
6eb5348
 
 
354bfc2
e967c14
 
6eb5348
 
 
e967c14
354bfc2
6eb5348
 
 
142035a
f601557
 
b8a625b
354bfc2
 
 
 
 
b8a625b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6354ea8
b8a625b
 
 
142035a
 
b8a625b
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
"""Folding Studio Demo App."""

import logging

import gradio as gr
import pandas as pd
import plotly.graph_objects as go
from folding_studio_data_models import FoldingModel
from gradio_molecule3d import Molecule3D

from folding_studio_demo.correlate import (
    SCORE_COLUMN_NAMES,
    SCORE_COLUMNS,
    compute_correlation_data,
    fake_predict_and_correlate,
    get_score_description,
    make_regression_plot,
    plot_correlation_ranking,
)
from folding_studio_demo.predict import filter_predictions, predict, predict_comparison

logger = logging.getLogger(__name__)


MOLECULE_REPS = [
    {
        "model": 0,
        # "chain": "",
        # "resname": "",
        "style": "cartoon",
        "color": "alphafold",
        # "residue_range": "",
        "around": 0,
        "byres": False,
        # "visible": False,
        # "opacity": 0.5
    }
]


MODEL_CHOICES = [
    ("AlphaFold2", FoldingModel.AF2),
    ("OpenFold", FoldingModel.OPENFOLD),
    # ("SoloSeq", FoldingModel.SOLOSEQ),
    ("Boltz-1", FoldingModel.BOLTZ),
    ("Chai-1", FoldingModel.CHAI),
    ("Protenix", FoldingModel.PROTENIX),
]

DEFAULT_SEQ = "MALWMRLLPLLALLALWGPDPAAA"
MODEL_EXAMPLES = {
    FoldingModel.AF2: [
        ["Monomer", f">A\n{DEFAULT_SEQ}"],
        ["Multimer", f">A\n{DEFAULT_SEQ}\n>B\n{DEFAULT_SEQ}"],
    ],
    FoldingModel.OPENFOLD: [
        ["Monomer", f">A\n{DEFAULT_SEQ}"],
        ["Multimer", f">A\n{DEFAULT_SEQ}\n>B\n{DEFAULT_SEQ}"],
    ],
    FoldingModel.SOLOSEQ: [["Monomer", f">A\n{DEFAULT_SEQ}"]],
    FoldingModel.BOLTZ: [
        ["Monomer", f">A|protein\n{DEFAULT_SEQ}"],
        ["Multimer", f">A|protein\n{DEFAULT_SEQ}\n>B|protein\n{DEFAULT_SEQ}"],
    ],
    FoldingModel.CHAI: [
        ["Monomer", f">protein|name=A\n{DEFAULT_SEQ}"],
        ["Multimer", f">protein|name=A\n{DEFAULT_SEQ}\n>protein|name=B\n{DEFAULT_SEQ}"],
    ],
    FoldingModel.PROTENIX: [
        ["Monomer", f">A|protein\n{DEFAULT_SEQ}"],
        ["Multimer", f">A|protein\n{DEFAULT_SEQ}\n>B|protein\n{DEFAULT_SEQ}"],
    ],
}


def sequence_input(dropdown: gr.Dropdown | None = None) -> gr.Textbox:
    """Sequence input component.

    Returns:
        gr.Textbox: Sequence input component
    """
    with gr.Row(equal_height=True):
        with gr.Column():
            sequence = gr.Textbox(
                label="Protein Sequence",
                lines=2,
                placeholder="Enter a protein sequence or upload a FASTA file",
            )
            dummy = gr.Textbox(label="Complex type", visible=False)

            examples = gr.Examples(
                examples=MODEL_EXAMPLES[FoldingModel.BOLTZ],
                inputs=[dummy, sequence],
            )
        file_input = gr.File(
            label="Upload a FASTA file",
            file_types=[".fasta", ".fa"],
            scale=0,
        )

    if dropdown is not None:
        dropdown.change(
            fn=lambda x: gr.Dataset(samples=MODEL_EXAMPLES[x]),
            inputs=[dropdown],
            outputs=[examples.dataset],
        )

    def _process_file(file: gr.File | None) -> gr.Textbox:
        if file is None:
            return gr.Textbox()
        try:
            with open(file.name, "r") as f:
                content = f.read().strip()
            return gr.Textbox(value=content)
        except Exception as e:
            logger.error(f"Error reading file: {e}")
            return gr.Textbox()

    file_input.change(fn=_process_file, inputs=[file_input], outputs=[sequence])
    return sequence


def simple_prediction(api_key: str) -> None:
    """Simple prediction tab.

    Args:
        api_key (str): Folding Studio API key
    """
    gr.Markdown(
        """
        ## Predict a Protein Structure

        It will be run in the background and the results will be displayed in the output section.
        The output will contain the protein structure and the pLDDT plot.

        Select a model to run the inference with and enter a protein sequence or upload a FASTA file.
        """
    )
    with gr.Row():
        dropdown = gr.Dropdown(
            label="Model",
            choices=MODEL_CHOICES,
            scale=0,
            value=FoldingModel.BOLTZ,
        )
        with gr.Column():
            sequence = sequence_input(dropdown)

    predict_btn = gr.Button(
        "Predict",
        elem_classes="gradient-button",
        elem_id="predict-btn",
        variant="primary",
    )

    with gr.Row():
        mol_output = Molecule3D(label="Protein Structure", reps=MOLECULE_REPS)
        metrics_plot = gr.Plot(label="pLDDT")

    predict_btn.click(
        fn=predict,
        inputs=[sequence, api_key, dropdown],
        outputs=[mol_output, metrics_plot],
    )


def model_comparison(api_key: str) -> None:
    """Model comparison tab.

    Args:
        api_key (str): Folding Studio API key
    """
    gr.Markdown(
        """
        ## Compare Folding Models

        Select multiple models to compare their predictions on your protein sequence.
        You can either enter the sequence directly or upload a FASTA file.

        The selected models will run in parallel and generate:
        - 3D structures of your protein that you can visualize and compare
        - pLDDT confidence scores plotted for each residue
        
        """
    )
    with gr.Row():
        models = gr.CheckboxGroup(
            label="Model",
            choices=MODEL_CHOICES,
            scale=0,
            min_width=300,
            value=[FoldingModel.BOLTZ, FoldingModel.CHAI, FoldingModel.PROTENIX],
        )
        with gr.Column():
            sequence = sequence_input()

    predict_btn = gr.Button(
        "Compare Models",
        elem_classes=["gradient-button"],
        elem_id="compare-models-btn",
        variant="primary",
    )
    with gr.Row():
        af2_predictions = gr.CheckboxGroup(label="AlphaFold2", visible=False)
        openfold_predictions = gr.CheckboxGroup(label="OpenFold", visible=False)
        solo_predictions = gr.CheckboxGroup(label="SoloSeq", visible=False)
        chai_predictions = gr.CheckboxGroup(label="Chai", visible=False)
        protenix_predictions = gr.CheckboxGroup(label="Protenix", visible=False)
        boltz_predictions = gr.CheckboxGroup(label="Boltz", visible=False)
    with gr.Row():
        mol_outputs = Molecule3D(
            label="Protein Structure", reps=MOLECULE_REPS, height=1000
        )
        metrics_plot = gr.Plot(label="pLDDT")

    # Store the initial predictions
    prediction_outputs = gr.State()

    predict_btn.click(
        fn=predict_comparison,
        inputs=[sequence, api_key, models],
        outputs=[
            prediction_outputs,
            af2_predictions,
            openfold_predictions,
            solo_predictions,
            chai_predictions,
            boltz_predictions,
            protenix_predictions,
        ],
    ).then(
        fn=filter_predictions,
        inputs=[
            prediction_outputs,
            af2_predictions,
            openfold_predictions,
            solo_predictions,
            chai_predictions,
            boltz_predictions,
            protenix_predictions,
        ],
        outputs=[mol_outputs, metrics_plot],
    )

    # Handle checkbox changes
    for checkbox in [
        af2_predictions,
        openfold_predictions,
        solo_predictions,
        chai_predictions,
        boltz_predictions,
        protenix_predictions,
    ]:
        checkbox.change(
            fn=filter_predictions,
            inputs=[
                prediction_outputs,
                af2_predictions,
                openfold_predictions,
                solo_predictions,
                chai_predictions,
                boltz_predictions,
                protenix_predictions,
            ],
            outputs=[mol_outputs, metrics_plot],
        )


def create_correlation_tab():
    gr.Markdown("# Correlation with experimental binding affinity data")
    gr.Markdown("""
        This analysis explores the relationship between protein folding model confidence scores and experimental binding affinity data.
        
        The experimental dataset contains binding affinity measurements (KD in nM) between antibody-antigen pairs. 
        Each data point includes:
        - The antibody's light and heavy chain sequences
        - The antigen sequence 
        - The experimental KD value
        
        The analysis involves submitting these sequences to protein folding models for 3D structure prediction.
        The models generate various confidence scores for each prediction. These scores are then correlated
        with the experimental binding affinity measurements to evaluate their effectiveness as predictors
        of binding strength.
    """)
    spr_data_with_scores = pd.read_csv("spr_af_scores_mapped.csv")
    spr_data_with_scores = spr_data_with_scores.rename(columns=SCORE_COLUMN_NAMES)
    prettified_columns = {
        "antibody_name": "Antibody Name",
        "KD (nM)": "KD (nM)",
        "antibody_vh_sequence": "Antibody VH Sequence",
        "antibody_vl_sequence": "Antibody VL Sequence",
        "antigen_sequence": "Antigen Sequence",
    }
    spr_data_with_scores = spr_data_with_scores.rename(columns=prettified_columns)
    columns = [
        "Antibody Name",
        "KD (nM)",
        "Antibody VH Sequence",
        "Antibody VL Sequence",
        "Antigen Sequence",
    ]
    # Display dataframe with floating point values rounded to 2 decimal places
    spr_data = gr.DataFrame(
        value=spr_data_with_scores[columns].round(2),
        label="Experimental Antibody-Antigen Binding Affinity Data",
    )

    gr.Markdown("# Prediction and correlation")

    fake_predict_btn = gr.Button(
        "Predict structures of all complexes",
        elem_classes="gradient-button",
        variant="primary",
    )
    prediction_dataframe = gr.Dataframe(
        label="Predicted Structures Data", visible=False
    )
    prediction_dataframe.change(
        fn=lambda x: gr.Dataframe(x, visible=True),
        inputs=[prediction_dataframe],
        outputs=[prediction_dataframe],
    )
    with gr.Row(visible=False) as correlation_row:
        with gr.Column(scale=0):
            with gr.Row():
                correlation_type = gr.Radio(
                    choices=["Spearman", "Pearson"],
                    value="Spearman",
                    label="Correlation Type",
                    interactive=True,
                    min_width=150,
                )
            with gr.Row():
                log_scale = gr.Checkbox(
                    label="Use log scale for KD",
                    value=False,
                    min_width=150,
                )
        with gr.Column():
            correlation_ranking_plot = gr.Plot(label="Correlation ranking")
    with gr.Row(visible=False) as regression_row:
        with gr.Column(scale=0):
            
            # User can select the columns to display in the correlation plot
            correlation_column = gr.Dropdown(
                label="Score data to display",
                choices=SCORE_COLUMNS,
                multiselect=False,
                value=SCORE_COLUMNS[0],
            )
            score_description = gr.Markdown(
                get_score_description(correlation_column.value)
            )
            correlation_column.change(
                fn=lambda x: get_score_description(x),
                inputs=correlation_column,
                outputs=score_description,
            )
        with gr.Column():
            regression_plot = gr.Plot(label="Correlation with binding affinity")

    fake_predict_btn.click(
        fn=lambda x: (
            *fake_predict_and_correlate(
                spr_data_with_scores, SCORE_COLUMNS, ["Antibody Name", "KD (nM)"]
            ),
            gr.Row(visible=True),
            gr.Row(visible=True)
        ),
        inputs=[correlation_type],
        outputs=[
            prediction_dataframe,
            correlation_ranking_plot,
            regression_plot,
            correlation_row,
            regression_row,
        ],
    )

    def update_plots_with_log(correlation_type, score, use_log):
        logger.info(f"Updating correlation plot for {correlation_type}")
        corr_data = compute_correlation_data(spr_data_with_scores, SCORE_COLUMNS)
        logger.info(f"Correlation data: {corr_data}")
        corr_ranking_plot = plot_correlation_ranking(corr_data, correlation_type, kd_col="KD (nM)" if not use_log else "log_kd")
        regression_plot = make_regression_plot(spr_data_with_scores, score, use_log)
        return regression_plot, corr_ranking_plot

    correlation_column.change(
        fn=update_plots_with_log,
        inputs=[correlation_type, correlation_column, log_scale],
        outputs=[regression_plot, correlation_ranking_plot],
    )

    correlation_type.change(
        fn=update_plots_with_log,
        inputs=[correlation_type, correlation_column, log_scale],
        outputs=[regression_plot, correlation_ranking_plot],
    )
    log_scale.change(
        fn=update_plots_with_log,
        inputs=[correlation_type, correlation_column, log_scale],
        outputs=[regression_plot, correlation_ranking_plot],
    )


def __main__():
    theme = gr.themes.Ocean(
        primary_hue="blue",
        secondary_hue="purple",
    )
    with gr.Blocks(theme=theme, title="Folding Studio Demo") as demo:
        gr.Markdown(
            """
            # Folding Studio: Harness the Power of Protein Folding 🧬

            Folding Studio is a platform for protein structure prediction.
            It uses the latest AI-powered folding models to predict the structure of a protein.

            Available models are : AlphaFold2, OpenFold, SoloSeq, Boltz-1, Chai and Protenix.

            ## API Key
            To use the Folding Studio API, you need to provide an API key.
            You can get your API key by asking to the Folding Studio team.
            """
        )
        api_key = gr.Textbox(label="Folding Studio API Key", type="password")
        gr.Markdown("## Demo Usage")
        with gr.Tab("πŸš€ Basic Folding"):
            simple_prediction(api_key)
        with gr.Tab("πŸ“Š Model Comparison"):
            model_comparison(api_key)
        with gr.Tab("πŸ” Correlations"):
            create_correlation_tab()

    demo.launch()