File size: 4,627 Bytes
a444e27
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
"""Folding Studio Demo App."""

import logging

import gradio as gr
from folding_studio_data_models import FoldingModel
from gradio_molecule3d import Molecule3D

from folding_studio_demo.predict import predict

logger = logging.getLogger(__name__)


MOLECULE_REPS = [
    {
        "model": 0,
        "chain": "",
        "resname": "",
        "style": "cartoon",
        "color": "alphafold",
        # "residue_range": "",
        "around": 0,
        "byres": False,
        # "visible": False,
        # "opacity": 0.5
    }
]

DEFAULT_PROTEIN_SEQ = ">protein description\nMALWMRLLPLLALLALWGPDPAAA"

MODEL_CHOICES = [
    # ("AlphaFold2", FoldingModel.AF2),
    # ("OpenFold", FoldingModel.OPENFOLD),
    # ("SoloSeq", FoldingModel.SOLOSEQ),
    ("Boltz-1", FoldingModel.BOLTZ),
    ("Chai-1", FoldingModel.CHAI),
    ("Protenix", FoldingModel.PROTENIX),
]


def sequence_input() -> gr.Textbox:
    """Sequence input component.

    Returns:
        gr.Textbox: Sequence input component
    """
    sequence = gr.Textbox(
        label="Protein Sequence",
        value=DEFAULT_PROTEIN_SEQ,
        lines=2,
        placeholder="Enter a protein sequence or upload a FASTA file",
    )
    file_input = gr.File(
        label="Upload a FASTA file",
        file_types=[".fasta", ".fa"],
    )

    def _process_file(file: gr.File | None) -> gr.Textbox:
        if file is None:
            return gr.Textbox()
        try:
            with open(file.name, "r") as f:
                content = f.read().strip()
            return gr.Textbox(value=content)
        except Exception as e:
            logger.error(f"Error reading file: {e}")
            return gr.Textbox()

    file_input.change(fn=_process_file, inputs=[file_input], outputs=[sequence])
    return sequence


def simple_prediction(api_key: str) -> None:
    """Simple prediction tab.

    Args:
        api_key (str): Folding Studio API key
    """
    gr.Markdown(
        """
        ### Predict a Protein Structure

        It will be run in the background and the results will be displayed in the output section.
        The output will contain the protein structure and the pLDDT plot.

        Select a model to run the inference with and enter a protein sequence or upload a FASTA file.
        """
    )
    with gr.Row():
        dropdown = gr.Dropdown(
            label="Model",
            choices=MODEL_CHOICES,
            scale=0,
            value=FoldingModel.BOLTZ,
        )
        with gr.Column():
            sequence = sequence_input()

    predict_btn = gr.Button("Predict")

    with gr.Row():
        mol_output = Molecule3D(label="Protein Structure", reps=MOLECULE_REPS)
        metrics_plot = gr.Plot(label="pLDDT")

    predict_btn.click(
        fn=predict,
        inputs=[sequence, api_key, dropdown],
        outputs=[mol_output, metrics_plot],
    )


def model_comparison(api_key: str) -> None:
    """Model comparison tab.

    Args:
        api_key (str): Folding Studio API key
    """

    with gr.Row():
        model = gr.Dropdown(
            label="Model",
            choices=MODEL_CHOICES,
            multiselect=True,
            scale=0,
            min_width=300,
            value=[FoldingModel.BOLTZ, FoldingModel.CHAI, FoldingModel.PROTENIX],
        )
        with gr.Column():
            sequence = sequence_input()

    predict_btn = gr.Button("Compare Models")

    with gr.Row():
        mol_output = Molecule3D(label="Protein Structure", reps=MOLECULE_REPS)
        metrics_plot = gr.Plot(label="pLDDT")

    predict_btn.click(
        fn=predict,
        inputs=[sequence, api_key, model],
        outputs=[mol_output, metrics_plot],
    )


def __main__():
    with gr.Blocks(title="Folding Studio Demo") as demo:
        gr.Markdown(
            """
            # Folding Studio: Harness the Power of Protein Folding 🧬

            Folding Studio is a platform for protein structure prediction.
            It uses the latest AI-powered folding models to predict the structure of a protein.

            Available models are : AlphaFold2, OpenFold, SoloSeq, Boltz-1, Chai and Protenix.

            ## API Key
            To use the Folding Studio API, you need to provide an API key.
            You can get your API key by asking to the Folding Studio team.
            """
        )
        api_key = gr.Textbox(label="Folding Studio API Key", type="password")
        gr.Markdown("## Demo Usage")
        with gr.Tab("πŸš€ Simple Prediction"):
            simple_prediction(api_key)
        with gr.Tab("πŸ“Š Model Comparison"):
            model_comparison(api_key)

    demo.launch()