File size: 14,242 Bytes
b8a625b
 
 
 
 
f601557
b8a625b
f601557
b8a625b
 
 
 
 
f601557
b8a625b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f601557
b8a625b
 
f601557
 
 
 
 
 
 
 
 
 
b8a625b
f601557
b8a625b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f601557
 
 
 
 
 
 
b8a625b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f601557
b8a625b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f601557
 
 
 
 
 
 
 
 
 
 
 
b8a625b
f601557
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b8a625b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f601557
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b8a625b
 
 
 
 
 
 
 
 
 
 
 
 
f601557
 
b8a625b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f601557
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b8a625b
f601557
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b8a625b
f601557
b8a625b
f601557
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
"""Predict protein structure using Folding Studio."""

import hashlib
import logging
import os
from io import StringIO
from pathlib import Path
from typing import Any

import gradio as gr
import numpy as np
import plotly.graph_objects as go
from Bio import SeqIO
from Bio.PDB import PDBIO, MMCIFParser, PDBParser, Superimposer
from folding_studio.client import Client
from folding_studio.query import Query
from folding_studio.query.boltz import BoltzQuery
from folding_studio.query.chai import ChaiQuery
from folding_studio.query.protenix import ProtenixQuery
from folding_studio_data_models import FoldingModel

from folding_studio_demo.model_fasta_validators import (
    BaseFastaValidator,
    BoltzFastaValidator,
    ChaiFastaValidator,
    ProtenixFastaValidator,
)

logger = logging.getLogger(__name__)

SEQUENCE_DIR = Path("sequences")
SEQUENCE_DIR.mkdir(parents=True, exist_ok=True)

OUTPUT_DIR = Path("output")
OUTPUT_DIR.mkdir(parents=True, exist_ok=True)


def convert_cif_to_pdb(cif_path: str, pdb_path: str) -> None:
    """Convert a .cif file to .pdb format using Biopython.

    Args:
        cif_path (str): Path to input .cif file
        pdb_path (str): Path to output .pdb file
    """
    # Parse the CIF file
    parser = MMCIFParser()
    structure = parser.get_structure("structure", cif_path)

    # Save as PDB
    io = PDBIO()
    io.set_structure(structure)
    io.save(pdb_path)


def add_plddt_plot(plddt_vals: list[list[float]], model_name: str) -> go.Figure:
    """Create a plot of metrics."""
    visible = True
    plddt_traces = [
        go.Scatter(
            x=np.arange(len(plddt_val)),
            y=plddt_val,
            hovertemplate="<i>pLDDT</i>: %{y:.2f} <br><i>Residue index:</i> %{x}<br>",
            name=f"{model_name} {i}",
            visible=visible,
        )
        for i, plddt_val in enumerate(plddt_vals)
    ]

    plddt_fig = go.Figure(data=plddt_traces)
    plddt_fig.update_layout(
        title="pLDDT",
        xaxis_title="Residue index",
        yaxis_title="pLDDT",
        height=500,
        template="simple_white",
        legend=dict(yanchor="bottom", y=0.01, xanchor="left", x=0.99),
    )
    return plddt_fig


def _write_fasta_file(
    sequence: str, directory: Path = SEQUENCE_DIR
) -> tuple[str, Path]:
    """Write sequence to FASTA file.

    Args:
        sequence (str): Sequence to write to FASTA file
        directory (Path): Directory to write FASTA file to (default: SEQUENCE_DIR)

    Returns:
        tuple[str, Path]: Tuple containing the sequence ID and the path to the FASTA file
    """
    input_rep = list(SeqIO.parse(StringIO(sequence), "fasta"))
    if not input_rep:
        raise gr.Error("No sequence found")

    seq_id = hashlib.sha256(
        "_".join([str(records.seq) for records in input_rep]).encode()
    ).hexdigest()
    seq_file = directory / f"sequence_{seq_id}.fasta"
    with open(seq_file, "w") as f:
        f.write(sequence)
    return seq_id, seq_file


class AF3Model:
    def __init__(
        self, api_key: str, model_name: str, query: Query, validator: BaseFastaValidator
    ):
        self.api_key = api_key
        self.model_name = model_name
        self.query = query
        self.validator = validator

    def call(self, seq_file: Path | str, output_dir: Path) -> None:
        """Predict protein structure from amino acid sequence using AF3 model.

        Args:
            seq_file (Path | str): Path to FASTA file containing amino acid sequence
            output_dir (Path): Path to output directory
        """
        # Validate FASTA format before calling
        is_valid, error_msg = self.check_file_description(seq_file)
        if not is_valid:
            logger.error(error_msg)
            raise gr.Error(error_msg)

        # Create a client using API key
        logger.info("Authenticating client with API key")
        client = Client.from_api_key(api_key=self.api_key)

        # Define query
        query: Query = self.query.from_file(path=seq_file, query_name="gradio")
        query.save_parameters(output_dir)

        logger.info("Payload: %s", query.payload)

        # Send a request
        logger.info(f"Sending {self.model_name} request to Folding Studio API")
        response = client.send_request(
            query, project_code=os.environ["FOLDING_PROJECT_CODE"]
        )

        # Access confidence data
        logger.info("Confidence data: %s", response.confidence_data)

        response.download_results(output_dir=output_dir, force=True, unzip=True)
        logger.info("Results downloaded to %s", output_dir)

    def format_fasta(self, sequence: str) -> str:
        """Format sequence to FASTA format."""
        return f">{self.model_name}\n{sequence}"

    def predictions(self, output_dir: Path) -> list[Path]:
        """Get the path to the prediction."""
        raise NotImplementedError("Not implemented")

    def has_prediction(self, output_dir: Path) -> bool:
        """Check if prediction exists in output directory."""
        return len(self.predictions(output_dir)) > 0

    def check_file_description(self, seq_file: Path | str) -> tuple[bool, str | None]:
        """Check if the file description is correct.

        Args:
            seq_file (Path | str): Path to FASTA file

        Returns:
            tuple[bool, str | None]: Tuple containing a boolean indicating if the format is correct and an error message if not
        """

        is_valid, error_msg = self.validator.is_valid_fasta(seq_file)
        if not is_valid:
            return False, error_msg

        return True, None


class ChaiModel(AF3Model):
    def __init__(self, api_key: str):
        super().__init__(api_key, "Chai", ChaiQuery, ChaiFastaValidator())

    def call(self, seq_file: Path | str, output_dir: Path) -> None:
        """Predict protein structure from amino acid sequence using Chai model.

        Args:
            seq_file (Path | str): Path to FASTA file containing amino acid sequence
            output_dir (Path): Path to output directory
        """
        super().call(seq_file, output_dir)

    def _get_chai_paired_files(self, directory: Path) -> list[tuple[Path, Path]]:
        """Get pairs of .cif and .npz files with matching model indices.

        Args:
            directory (Path): Directory containing the prediction files

        Returns:
            list[tuple[Path, Path]]: List of tuples containing (cif_path, npz_path) pairs
        """
        # Get all cif files and extract their indices

    def predictions(self, output_dir: Path) -> dict[Path, dict[str, Any]]:
        """Get the path to the prediction."""
        prediction = next(output_dir.rglob("pred.model_idx_[0-9].cif"), None)
        if prediction is None:
            return {}

        cif_files = {
            int(f.stem.split("model_idx_")[1]): f
            for f in prediction.parent.glob("pred.model_idx_*.cif")
        }

        # Get all npz files and extract their indices
        npz_files = {
            int(f.stem.split("model_idx_")[1]): f
            for f in prediction.parent.glob("scores.model_idx_*.npz")
        }

        # Find common indices and create pairs
        common_indices = sorted(set(cif_files.keys()) & set(npz_files.keys()))

        return {
            idx: {"prediction_path": cif_files[idx], "metrics": np.load(npz_files[idx])}
            for idx in common_indices
        }


class ProtenixModel(AF3Model):
    def __init__(self, api_key: str):
        super().__init__(api_key, "Protenix", ProtenixQuery, ProtenixFastaValidator())

    def call(self, seq_file: Path | str, output_dir: Path) -> None:
        """Predict protein structure from amino acid sequence using Protenix model.

        Args:
            seq_file (Path | str): Path to FASTA file containing amino acid sequence
            output_dir (Path): Path to output directory
        """
        super().call(seq_file, output_dir)

    def predictions(self, output_dir: Path) -> list[Path]:
        """Get the path to the prediction."""
        return list(output_dir.rglob("*_model_[0-9].cif"))


class BoltzModel(AF3Model):
    def __init__(self, api_key: str):
        super().__init__(api_key, "Boltz", BoltzQuery, BoltzFastaValidator())

    def call(self, seq_file: Path | str, output_dir: Path) -> None:
        """Predict protein structure from amino acid sequence using Boltz model.

        Args:
            seq_file (Path | str): Path to FASTA file containing amino acid sequence
            output_dir (Path): Path to output directory
        """

        super().call(seq_file, output_dir)

    def predictions(self, output_dir: Path) -> list[Path]:
        """Get the path to the prediction."""
        prediction_paths = list(output_dir.rglob("*_model_[0-9].cif"))
        return {
            int(cif_path.stem[-1]): {
                "prediction_path": cif_path,
                "metrics": np.load(list(cif_path.parent.glob("plddt_*.npz"))[0]),
            }
            for cif_path in prediction_paths
        }


def extract_plddt_from_cif(cif_path):
    structure = MMCIFParser().get_structure("structure", cif_path)

    # Dictionary to store pLDDT values per residue
    plddt_values = []

    # Iterate through all atoms
    for model in structure:
        for chain in model:
            for residue in chain:
                # Get the first atom of each residue (usually CA atom)
                if "CA" in residue:
                    # The B-factor contains the pLDDT value
                    plddt = residue["CA"].get_bfactor()
                    plddt_values.append(plddt)

    return plddt_values


def predict(sequence: str, api_key: str, model_type: FoldingModel) -> tuple[str, str]:
    """Predict protein structure from amino acid sequence using Boltz model.

    Args:
        sequence (str): Amino acid sequence to predict structure for
        api_key (str): Folding API key
        model (FoldingModel): Folding model to use

    Returns:
        tuple[str, str]: Tuple containing the path to the PDB file and the pLDDT plot
    """
    if not api_key:
        raise gr.Error("Missing API key, please enter a valid API key")

    # Set up unique output directory based on sequence hash
    seq_id, seq_file = _write_fasta_file(sequence)
    output_dir = OUTPUT_DIR / seq_id / model_type
    output_dir.mkdir(parents=True, exist_ok=True)

    if model_type == FoldingModel.BOLTZ:
        model = BoltzModel(api_key)
    elif model_type == FoldingModel.CHAI:
        model = ChaiModel(api_key)
    elif model_type == FoldingModel.PROTENIX:
        model = ProtenixModel(api_key)
    else:
        raise ValueError(f"Model {model_type} not supported")

    # Check if prediction already exists
    if not model.has_prediction(output_dir):
        # Run Boltz prediction
        logger.info(f"Predicting {seq_id}")
        model.call(seq_file=seq_file, output_dir=output_dir)
        logger.info("Prediction done. Output directory: %s", output_dir)
    else:
        logger.info("Prediction already exists. Output directory: %s", output_dir)

    # output_dir = Path("boltz_results")  # debug

    # Convert output CIF to PDB
    if not model.has_prediction(output_dir):
        raise gr.Error("No prediction found")

    predictions = model.predictions(output_dir)
    pdb_paths = []
    model_plddt_vals = []
    for model_idx, prediction in predictions.items():
        cif_path = prediction["prediction_path"]
        logger.info(
            "CIF file: %s",
        )

        converted_pdb_path = str(
            output_dir / f"{model.model_name}_prediction_{model_idx}.pdb"
        )
        convert_cif_to_pdb(str(cif_path), str(converted_pdb_path))
        plddt_vals = extract_plddt_from_cif(cif_path)
        pdb_paths.append(converted_pdb_path)
        model_plddt_vals.append(plddt_vals)
    plddt_plot = add_plddt_plot(
        plddt_vals=model_plddt_vals, model_name=model.model_name
    )
    return pdb_paths, plddt_plot


def align_structures(pdb_paths: list[str]) -> list[str]:
    """Align multiple PDB structures to the first structure.

    Args:
        pdb_paths (list[str]): List of paths to PDB files to align

    Returns:
        list[str]: List of paths to aligned PDB files
    """

    parser = PDBParser()
    io = PDBIO()

    # Parse the reference structure (first one)
    ref_structure = parser.get_structure("reference", pdb_paths[0])
    ref_atoms = [atom for atom in ref_structure.get_atoms() if atom.get_name() == "CA"]

    aligned_paths = [pdb_paths[0]]  # First structure is already aligned

    # Align each subsequent structure to the reference
    for i, pdb_path in enumerate(pdb_paths[1:], start=1):
        # Parse the structure to align
        structure = parser.get_structure(f"model_{i}", pdb_path)
        atoms = [atom for atom in structure.get_atoms() if atom.get_name() == "CA"]

        # Create superimposer
        sup = Superimposer()

        # Set the reference and moving atoms
        sup.set_atoms(ref_atoms, atoms)

        # Apply the transformation to all atoms in the structure
        sup.apply(structure.get_atoms())

        # Save the aligned structure
        aligned_path = str(Path(pdb_path).parent / f"aligned_{Path(pdb_path).name}")
        io.set_structure(structure)
        io.save(aligned_path)
        aligned_paths.append(aligned_path)

    return aligned_paths


def predict_comparison(
    sequence: str, api_key: str, model_types: list[FoldingModel]
) -> tuple[str, str]:
    """Predict protein structure from amino acid sequence using Boltz model.

    Args:
        sequence (str): Amino acid sequence to predict structure for
        api_key (str): Folding API key
        model (FoldingModel): Folding model to use

    Returns:
        tuple[str, str]: Tuple containing the path to the PDB file and the pLDDT plot
    """
    if not api_key:
        raise gr.Error("Missing API key, please enter a valid API key")

    # Set up unique output directory based on sequence hash
    pdb_paths = []
    for model_type in model_types:
        model_pdb_paths, _ = predict(sequence, api_key, model_type)
        pdb_paths += model_pdb_paths

    aligned_paths = align_structures(pdb_paths)

    return aligned_paths