jfaustin's picture
add dockerfile and folding studio cli
44459bb
"""API batch prediction call wrappers."""
from io import StringIO
from pathlib import Path
import requests
import typer
from Bio import SeqIO
from folding_studio_data_models import (
AF2Request,
BatchRequest,
FoldingModel,
OpenFoldRequest,
Sequence,
)
from rich import print # pylint:disable=redefined-builtin
from folding_studio.config import API_URL, REQUEST_TIMEOUT
from folding_studio.utils.data_model import (
PredictRequestCustomFiles,
PredictRequestParams,
)
from folding_studio.utils.headers import get_auth_headers
from folding_studio.utils.project_validation import define_project_code_or_raise
def _extract_sequences_from_file(file: Path) -> list[Sequence]:
content = SeqIO.parse(StringIO(file.read_text()), "fasta")
sequences = []
for records in content:
description = str(records.description)
sequences.append(
Sequence(description=description, fasta_sequence=str(records.seq))
)
return sequences
def _build_request_from_fasta(
file: Path,
folding_model: FoldingModel,
params: PredictRequestParams,
custom_files: PredictRequestCustomFiles,
) -> AF2Request | OpenFoldRequest:
"""Build an AF2Request from a fasta file path and request parameters.
Args:
file (Path): Path to a file describing the protein.
folding_model (FoldingModel): Folding model to run the inference with.
params (PredictRequestParams): API request parameters.
custom_files (PredictRequestCustomFiles): API request custom files.
Returns:
AF2Request | OpenFoldRequest: Request object.
"""
parameters = dict(
num_recycle=params.num_recycle,
random_seed=params.random_seed,
custom_templates=params.custom_template_ids
+ [str(f) for f in custom_files.templates],
custom_msas=[str(f) for f in custom_files.msas],
gap_trick=params.gap_trick,
msa_mode=params.msa_mode,
max_msa_clusters=params.max_msa_clusters,
max_extra_msa=params.max_extra_msa,
template_mode=params.template_mode,
model_subset=params.model_subset,
initial_guess_file=custom_files.initial_guess_files,
templates_masks_file=custom_files.templates_masks_files,
)
if folding_model == FoldingModel.AF2:
return AF2Request(
complex_id=file.stem,
sequences=_extract_sequences_from_file(file),
parameters=parameters,
ignore_cache=params.ignore_cache,
)
return OpenFoldRequest(
complex_id=file.stem,
sequences=_extract_sequences_from_file(file),
parameters=parameters,
ignore_cache=params.ignore_cache,
)
def batch_prediction(
files: list[Path],
folding_model: FoldingModel,
params: PredictRequestParams,
custom_files: PredictRequestCustomFiles,
project_code: str | None = None,
num_seed: int | None = None,
) -> dict:
"""Make a batch prediction from a list of files.
Args:
files (list[Path]): List of data source file paths.
params (PredictRequestParams): API request parameters.
custom_files (PredictRequestCustomFiles): API request custom files.
project_code (str|None): Project code under which the jobs are billed.
num_seed (int | None, optional): Number of random seeds. Defaults to None.
Raises:
typer.Exit: If an error occurs during the API call.
"""
project_code = define_project_code_or_raise(project_code=project_code)
# upload custom files if any
custom_files.upload()
if num_seed is not None:
folding_requests = []
for seed in range(num_seed):
params.random_seed = seed
folding_requests += [
_build_request_from_fasta(
file=file,
folding_model=folding_model,
params=params,
custom_files=custom_files,
)
for file in files
]
else:
folding_requests = [
_build_request_from_fasta(
file=file,
folding_model=folding_model,
params=params,
custom_files=custom_files,
)
for file in files
]
batch_request = BatchRequest(requests=folding_requests)
url = API_URL + "batchPredict"
response = requests.post(
url,
data={"batch_jobs_request": batch_request.model_dump_json()},
params={"project_code": project_code},
headers=get_auth_headers(),
timeout=REQUEST_TIMEOUT,
)
if not response.ok:
print(f"An error occurred: {response.content.decode()}")
raise typer.Exit(code=1)
response_json = response.json()
return response_json
def batch_prediction_from_file(
file: Path,
project_code: str | None = None,
) -> dict:
"""Make a batch prediction from a configuration files.
Args:
file (Path): Configuration file path.
project_code (str|None): Project code under which the jobs are billed.
Raises:
typer.Exit: If an error occurs during the API call.
"""
project_code = define_project_code_or_raise(project_code=project_code)
url = API_URL + "batchPredictFromFile"
custom_files = PredictRequestCustomFiles.from_batch_jobs_file(batch_jobs_file=file)
local_to_uploaded = custom_files.upload()
if local_to_uploaded:
content = file.read_text()
for local, uploaded in local_to_uploaded.items():
content = content.replace(local, uploaded)
tmp_file = Path("tmp_batch_job" + file.suffix)
tmp_file.write_text(content)
file_to_upload = tmp_file
else:
tmp_file = None
file_to_upload = file
with file_to_upload.open("rb") as input_file:
response = requests.post(
url,
headers=get_auth_headers(),
files=[("batch_jobs_file", input_file)],
params={"project_code": project_code},
timeout=REQUEST_TIMEOUT,
)
if tmp_file and tmp_file.exists():
tmp_file.unlink()
if not response.ok:
print(f"An error occurred: {response.content.decode()}")
raise typer.Exit(code=1)
return response.json()