jfaustin's picture
fix AF2 models multimer prediction fetch (#20)
4437682 verified
"""Models for the Folding Studio API."""
import json
import logging
import os
import sys
import time
from io import StringIO
from pathlib import Path
from typing import Any
import folding_studio
import gradio as gr
import numpy as np
from folding_studio import single_job_prediction
from folding_studio.client import Client
from folding_studio.commands.experiment import results as get_results
from folding_studio.commands.experiment import status as get_status
from folding_studio.query import Query
from folding_studio.query.boltz import BoltzQuery
from folding_studio.query.chai import ChaiQuery
from folding_studio.query.protenix import ProtenixQuery
from folding_studio_data_models import AF2Parameters, OpenFoldParameters
from folding_studio_data_models.parameters.base import BaseFoldingParameters
from folding_studio_demo.model_fasta_validators import (
BaseFastaValidator,
BoltzFastaValidator,
ChaiFastaValidator,
ProtenixFastaValidator,
)
class Capturing(list):
"""Capture stdout output."""
def __enter__(self):
self._stdout = sys.stdout
sys.stdout = self._stringio = StringIO()
return self
def __exit__(self, *args):
self.extend(self._stringio.getvalue().splitlines())
del self._stringio # free up some memory
sys.stdout = self._stdout
logger = logging.getLogger(__name__)
class AF3Model:
model_name = None
def __init__(self, api_key: str, query: Query, validator: BaseFastaValidator):
self.api_key = api_key
self.query = query
self.validator = validator
def call(
self, seq_file: Path | str, output_dir: Path, format_fasta: bool = False
) -> None:
"""Predict protein structure from amino acid sequence using AF3 model.
Args:
seq_file (Path | str): Path to FASTA file containing amino acid sequence
output_dir (Path): Path to output directory
format_description (bool): Whether to format the description of the sequence
"""
# Validate FASTA format before calling
is_valid, error_msg = self.check_file_description(seq_file)
if format_fasta and not is_valid:
logger.info("Invalid FASTA file format, forcing formatting...")
self.format_fasta(seq_file)
elif not is_valid:
logger.error(error_msg)
raise gr.Error(error_msg)
# Create a client using API key
logger.info("Authenticating client with API key")
client = Client.from_api_key(api_key=self.api_key)
# Define query
query: Query = self.query.from_file(path=seq_file, query_name="gradio")
query.save_parameters(output_dir)
logger.info("Payload: %s", query.payload)
# Send a request
logger.info(f"Sending {self.model_name} request to Folding Studio API")
response = client.send_request(
query, project_code=os.environ["FOLDING_PROJECT_CODE"]
)
# Access confidence data
logger.info("Confidence data: %s", response.confidence_data)
response.download_results(output_dir=output_dir, force=True, unzip=True)
logger.info("Results downloaded to %s", output_dir)
def format_fasta(self, seq_file: Path | str) -> None:
"""Format sequence to FASTA format.
Args:
seq_file (Path | str): Path to FASTA file
"""
formatted_fasta = self.validator.transform_fasta(seq_file)
with open(seq_file, "w") as f:
f.write(formatted_fasta)
def predictions(self, output_dir: Path) -> list[Path]:
"""Get the path to the prediction.
Args:
output_dir (Path): Path to output directory
Returns:
list[Path]: List of paths to predictions
"""
raise NotImplementedError()
def has_prediction(self, output_dir: Path) -> bool:
"""Check if prediction exists in output directory."""
return len(self.predictions(output_dir)) > 0
def check_file_description(self, seq_file: Path | str) -> tuple[bool, str | None]:
"""Check if the file description is correct.
Args:
seq_file (Path | str): Path to FASTA file
Returns:
tuple[bool, str | None]: Tuple containing a boolean indicating if the format is correct and an error message if not
"""
is_valid, error_msg = self.validator.is_valid_fasta(seq_file)
if not is_valid:
return False, error_msg
return True, None
class ChaiModel(AF3Model):
model_name = "Chai"
def __init__(self, api_key: str):
super().__init__(api_key, ChaiQuery, ChaiFastaValidator())
def call(
self, seq_file: Path | str, output_dir: Path, format_fasta: bool = False
) -> None:
"""Predict protein structure from amino acid sequence using Chai model.
Args:
seq_file (Path | str): Path to FASTA file containing amino acid sequence
output_dir (Path): Path to output directory
format_fasta (bool): Whether to format the FASTA file
"""
super().call(seq_file, output_dir, format_fasta)
def predictions(self, output_dir: Path) -> dict[Path, dict[str, Any]]:
"""Get the path to the prediction."""
prediction = next(output_dir.rglob("pred.model_idx_[0-9].cif"), None)
if prediction is None:
return {}
cif_files = {
int(f.stem.split("model_idx_")[1]): f
for f in prediction.parent.glob("pred.model_idx_*.cif")
}
# Get all npz files and extract their indices
npz_files = {
int(f.stem.split("model_idx_")[1]): f
for f in prediction.parent.glob("scores.model_idx_*.npz")
}
# Find common indices and create pairs
common_indices = sorted(set(cif_files.keys()) & set(npz_files.keys()))
return {
idx: {"prediction_path": cif_files[idx], "metrics": np.load(npz_files[idx])}
for idx in common_indices
}
class ProtenixModel(AF3Model):
model_name = "Protenix"
def __init__(self, api_key: str):
super().__init__(api_key, ProtenixQuery, ProtenixFastaValidator())
def call(
self, seq_file: Path | str, output_dir: Path, format_fasta: bool = False
) -> None:
"""Predict protein structure from amino acid sequence using Protenix model.
Args:
seq_file (Path | str): Path to FASTA file containing amino acid sequence
output_dir (Path): Path to output directory
format_fasta (bool): Whether to format the FASTA file
"""
super().call(seq_file, output_dir, format_fasta)
def predictions(self, output_dir: Path) -> list[Path]:
"""Get the path to the prediction."""
prediction = next(output_dir.rglob("sequence_*_sample_[0-9].cif"), None)
if prediction is None:
return {}
cif_files = {
int(f.stem[-1]): f
for f in prediction.parent.glob("sequence_*_sample_[0-9].cif")
}
# Get all npz files and extract their indices
json_files = {
int(f.stem[-1]): f
for f in prediction.parent.glob(
"sequence_*_summary_confidence_sample_[0-9].json"
)
}
# Find common indices and create pairs
common_indices = sorted(set(cif_files.keys()) & set(json_files.keys()))
return {
idx: {
"prediction_path": cif_files[idx],
"metrics": json.load(open(json_files[idx])),
}
for idx in common_indices
}
class BoltzModel(AF3Model):
model_name = "Boltz"
def __init__(self, api_key: str):
super().__init__(api_key, BoltzQuery, BoltzFastaValidator())
def call(
self, seq_file: Path | str, output_dir: Path, format_fasta: bool = False
) -> None:
"""Predict protein structure from amino acid sequence using Boltz model.
Args:
seq_file (Path | str): Path to FASTA file containing amino acid sequence
output_dir (Path): Path to output directory
format_fasta (bool): Whether to format the FASTA file
"""
super().call(seq_file, output_dir, format_fasta)
def predictions(self, output_dir: Path) -> list[Path]:
"""Get the path to the prediction."""
prediction_paths = list(output_dir.rglob("*_model_[0-9].cif"))
return {
int(cif_path.stem[-1]): {
"prediction_path": cif_path,
"metrics": np.load(list(cif_path.parent.glob("plddt_*.npz"))[0]),
}
for cif_path in prediction_paths
}
class OldModel:
model_name = None
def __init__(self, api_key: str):
self.api_key = api_key
def call(
self,
seq_file: Path | str,
output_dir: Path,
parameters: BaseFoldingParameters,
*args,
**kwargs,
) -> None:
"""Predict protein structure from amino acid sequence using AF2 model.
Args:
seq_file (Path | str): Path to FASTA file containing amino acid sequence
output_dir (Path): Path to output directory
"""
output = single_job_prediction(
fasta_file=seq_file,
parameters=parameters,
api_key=self.api_key,
)
experiment_id = output["message"]["experiment_id"]
done = False
while not done:
with Capturing() as output:
get_status(experiment_id, api_key=self.api_key)
status = output[0]
logger.info(f"Experiment {experiment_id} status: {status}")
if status == "Done":
done = True
logger.info("Downloading results")
get_results(
experiment_id,
force=True,
unzip=True,
output=output_dir / "results.zip",
api_key=self.api_key,
)
logger.info("Results downloaded to %s", output_dir)
else:
logger.info("Sleeping for 10 seconds")
time.sleep(10)
def format_fasta(self, seq_file: Path | str) -> None:
"""Format sequence to FASTA format.
Args:
seq_file (Path | str): Path to FASTA file
"""
return
def predictions(self, output_dir: Path) -> dict[int, dict[str, Any]]:
"""Get the path to the prediction.
Args:
output_dir (Path): Path to output directory
Returns:
dict[int, dict[str, Any]]: Dictionary mapping model indices to their prediction paths and metrics
"""
prediction_paths = list(
(output_dir / "results").rglob("relaxed_model_[0-9]_*_pred_0.pdb")
)
metrics_path = output_dir / "results" / "metrics_per_model.json"
if not metrics_path.exists():
return {}
with open(metrics_path, "r") as f:
metrics = json.load(f)
output = {}
for pred_path in prediction_paths:
model_id = int(pred_path.stem.split("_")[2])
model_name = "_".join(pred_path.stem.split("_")[1:-2])
output[model_id] = {
"prediction_path": pred_path,
"metrics": metrics[model_name],
}
return output
def has_prediction(self, output_dir: Path) -> bool:
"""Check if prediction exists in output directory."""
return len(self.predictions(output_dir)) > 0
def check_file_description(self, seq_file: Path | str) -> tuple[bool, str | None]:
"""Check if the file description is correct.
Args:
seq_file (Path | str): Path to FASTA file
Returns:
tuple[bool, str | None]: Tuple containing a boolean indicating if the format is correct and an error message if not
"""
return True, None
class AF2Model(OldModel):
model_name = "AlphaFold2"
def call(self, seq_file: Path | str, output_dir: Path, *args, **kwargs) -> None:
super().call(seq_file, output_dir, AF2Parameters(), *args, **kwargs)
class OpenFoldModel(OldModel):
model_name = "OpenFold"
def call(self, seq_file: Path | str, output_dir: Path, *args, **kwargs) -> None:
super().call(seq_file, output_dir, OpenFoldParameters(), *args, **kwargs)