|
"""Predict protein structure using Folding Studio.""" |
|
|
|
import hashlib |
|
import logging |
|
import os |
|
from pathlib import Path |
|
|
|
import gradio as gr |
|
import numpy as np |
|
import plotly.graph_objects as go |
|
from Bio import SeqIO |
|
from Bio.PDB import PDBIO, MMCIFParser |
|
from folding_studio.client import Client |
|
from folding_studio.query import Query |
|
from folding_studio.query.boltz import BoltzQuery |
|
from folding_studio.query.chai import ChaiQuery |
|
from folding_studio.query.protenix import ProtenixQuery |
|
from folding_studio_data_models import FoldingModel |
|
|
|
from folding_studio_demo.model_fasta_validators import ( |
|
BaseFastaValidator, |
|
BoltzFastaValidator, |
|
ChaiFastaValidator, |
|
ProtenixFastaValidator, |
|
) |
|
|
|
logger = logging.getLogger(__name__) |
|
|
|
SEQUENCE_DIR = Path("sequences") |
|
SEQUENCE_DIR.mkdir(parents=True, exist_ok=True) |
|
|
|
OUTPUT_DIR = Path("output") |
|
OUTPUT_DIR.mkdir(parents=True, exist_ok=True) |
|
|
|
|
|
def convert_cif_to_pdb(cif_path: str, pdb_path: str) -> None: |
|
"""Convert a .cif file to .pdb format using Biopython. |
|
|
|
Args: |
|
cif_path (str): Path to input .cif file |
|
pdb_path (str): Path to output .pdb file |
|
""" |
|
|
|
parser = MMCIFParser() |
|
structure = parser.get_structure("structure", cif_path) |
|
|
|
|
|
io = PDBIO() |
|
io.set_structure(structure) |
|
io.save(pdb_path) |
|
|
|
|
|
def add_plddt_plot(plddt_vals: list[float]) -> str: |
|
"""Create a plot of metrics.""" |
|
visible = True |
|
plddt_trace = go.Scatter( |
|
x=np.arange(len(plddt_vals)), |
|
y=plddt_vals, |
|
hovertemplate="<i>pLDDT</i>: %{y:.2f} <br><i>Residue index:</i> %{x}<br>", |
|
name="seq", |
|
visible=visible, |
|
) |
|
|
|
plddt_fig = go.Figure(data=[plddt_trace]) |
|
plddt_fig.update_layout( |
|
title="pLDDT", |
|
xaxis_title="Residue index", |
|
yaxis_title="pLDDT", |
|
height=500, |
|
template="simple_white", |
|
legend=dict(yanchor="bottom", y=0.01, xanchor="left", x=0.99), |
|
) |
|
return plddt_fig |
|
|
|
|
|
def _write_fasta_file( |
|
sequence: str, directory: Path = SEQUENCE_DIR |
|
) -> tuple[str, Path]: |
|
"""Write sequence to FASTA file. |
|
|
|
Args: |
|
sequence (str): Sequence to write to FASTA file |
|
directory (Path): Directory to write FASTA file to (default: SEQUENCE_DIR) |
|
|
|
Returns: |
|
tuple[str, Path]: Tuple containing the sequence ID and the path to the FASTA file |
|
""" |
|
seq_id = hashlib.sha1(sequence.encode()).hexdigest() |
|
seq_file = directory / f"sequence_{seq_id}.fasta" |
|
with open(seq_file, "w") as f: |
|
f.write(sequence) |
|
return seq_id, seq_file |
|
|
|
|
|
class AF3Model: |
|
def __init__( |
|
self, api_key: str, model_name: str, query: Query, validator: BaseFastaValidator |
|
): |
|
self.api_key = api_key |
|
self.model_name = model_name |
|
self.query = query |
|
self.validator = validator |
|
|
|
def call(self, seq_file: Path | str, output_dir: Path) -> None: |
|
"""Predict protein structure from amino acid sequence using AF3 model. |
|
|
|
Args: |
|
seq_file (Path | str): Path to FASTA file containing amino acid sequence |
|
output_dir (Path): Path to output directory |
|
""" |
|
|
|
is_valid, error_msg = self.check_file_description(seq_file) |
|
if not is_valid: |
|
logger.error(error_msg) |
|
raise gr.Error(error_msg) |
|
|
|
|
|
logger.info("Authenticating client with API key") |
|
client = Client.from_api_key(api_key=self.api_key) |
|
|
|
|
|
query: Query = self.query.from_file(path=seq_file, query_name="gradio") |
|
query.save_parameters(output_dir) |
|
|
|
logger.info("Payload: %s", query.payload) |
|
|
|
|
|
logger.info(f"Sending {self.model_name} request to Folding Studio API") |
|
response = client.send_request( |
|
query, project_code=os.environ["FOLDING_PROJECT_CODE"] |
|
) |
|
|
|
|
|
logger.info("Confidence data: %s", response.confidence_data) |
|
|
|
response.download_results(output_dir=output_dir, force=True, unzip=True) |
|
logger.info("Results downloaded to %s", output_dir) |
|
|
|
def format_fasta(self, sequence: str) -> str: |
|
"""Format sequence to FASTA format.""" |
|
return f">{self.model_name}\n{sequence}" |
|
|
|
def predictions(self, output_dir: Path) -> list[Path]: |
|
"""Get the path to the prediction.""" |
|
raise NotImplementedError("Not implemented") |
|
|
|
def has_prediction(self, output_dir: Path) -> bool: |
|
"""Check if prediction exists in output directory.""" |
|
return any(self.predictions(output_dir)) |
|
|
|
def check_file_description(self, seq_file: Path | str) -> tuple[bool, str | None]: |
|
"""Check if the file description is correct. |
|
|
|
Args: |
|
seq_file (Path | str): Path to FASTA file |
|
|
|
Returns: |
|
tuple[bool, str | None]: Tuple containing a boolean indicating if the format is correct and an error message if not |
|
""" |
|
input_rep = list(SeqIO.parse(seq_file, "fasta")) |
|
if not input_rep: |
|
error_msg = f"{self.model_name.upper()} Validation Error: No sequence found" |
|
return False, error_msg |
|
|
|
is_valid, error_msg = self.validator.is_valid_fasta(seq_file) |
|
if not is_valid: |
|
return False, error_msg |
|
|
|
return True, None |
|
|
|
|
|
class ChaiModel(AF3Model): |
|
def __init__(self, api_key: str): |
|
super().__init__(api_key, "Chai", ChaiQuery, ChaiFastaValidator()) |
|
|
|
def call(self, seq_file: Path | str, output_dir: Path) -> None: |
|
"""Predict protein structure from amino acid sequence using Chai model. |
|
|
|
Args: |
|
seq_file (Path | str): Path to FASTA file containing amino acid sequence |
|
output_dir (Path): Path to output directory |
|
""" |
|
super().call(seq_file, output_dir) |
|
|
|
def predictions(self, output_dir: Path) -> list[Path]: |
|
"""Get the path to the prediction.""" |
|
return list(output_dir.rglob("*_model_[0-9].cif")) |
|
|
|
|
|
class ProtenixModel(AF3Model): |
|
def __init__(self, api_key: str): |
|
super().__init__(api_key, "Protenix", ProtenixQuery, ProtenixFastaValidator()) |
|
|
|
def call(self, seq_file: Path | str, output_dir: Path) -> None: |
|
"""Predict protein structure from amino acid sequence using Protenix model. |
|
|
|
Args: |
|
seq_file (Path | str): Path to FASTA file containing amino acid sequence |
|
output_dir (Path): Path to output directory |
|
""" |
|
super().call(seq_file, output_dir) |
|
|
|
def predictions(self, output_dir: Path) -> list[Path]: |
|
"""Get the path to the prediction.""" |
|
return list(output_dir.rglob("*_model_[0-9].cif")) |
|
|
|
|
|
class BoltzModel(AF3Model): |
|
def __init__(self, api_key: str): |
|
super().__init__(api_key, "Boltz", BoltzQuery, BoltzFastaValidator()) |
|
|
|
def call(self, seq_file: Path | str, output_dir: Path) -> None: |
|
"""Predict protein structure from amino acid sequence using Boltz model. |
|
|
|
Args: |
|
seq_file (Path | str): Path to FASTA file containing amino acid sequence |
|
output_dir (Path): Path to output directory |
|
""" |
|
|
|
super().call(seq_file, output_dir) |
|
|
|
def predictions(self, output_dir: Path) -> list[Path]: |
|
"""Get the path to the prediction.""" |
|
return list(output_dir.rglob("*_model_[0-9].cif")) |
|
|
|
|
|
def predict(sequence: str, api_key: str, model_type: FoldingModel) -> tuple[str, str]: |
|
"""Predict protein structure from amino acid sequence using Boltz model. |
|
|
|
Args: |
|
sequence (str): Amino acid sequence to predict structure for |
|
api_key (str): Folding API key |
|
model (FoldingModel): Folding model to use |
|
|
|
Returns: |
|
tuple[str, str]: Tuple containing the path to the PDB file and the pLDDT plot |
|
""" |
|
|
|
|
|
seq_id, seq_file = _write_fasta_file(sequence) |
|
output_dir = OUTPUT_DIR / seq_id / model_type |
|
output_dir.mkdir(parents=True, exist_ok=True) |
|
|
|
if model_type == FoldingModel.BOLTZ: |
|
model = BoltzModel(api_key) |
|
elif model_type == FoldingModel.CHAI: |
|
model = ChaiModel(api_key) |
|
elif model_type == FoldingModel.PROTENIX: |
|
model = ProtenixModel(api_key) |
|
else: |
|
raise ValueError(f"Model {model_type} not supported") |
|
|
|
|
|
if not model.has_prediction(output_dir): |
|
|
|
logger.info(f"Predicting {seq_id}") |
|
model.call(seq_file=seq_file, output_dir=output_dir) |
|
logger.info("Prediction done. Output directory: %s", output_dir) |
|
else: |
|
logger.info("Prediction already exists. Output directory: %s", output_dir) |
|
|
|
|
|
|
|
|
|
if not model.has_prediction(output_dir): |
|
raise gr.Error("No prediction found") |
|
|
|
pred_cif = model.predictions(output_dir)[0] |
|
logger.info("Output file: %s", pred_cif) |
|
|
|
converted_pdb_path = str(output_dir / f"pred_{seq_id}.pdb") |
|
convert_cif_to_pdb(str(pred_cif), str(converted_pdb_path)) |
|
logger.info("Converted PDB file: %s", converted_pdb_path) |
|
|
|
plddt_file = list(pred_cif.parent.glob("plddt_*.npz"))[0] |
|
logger.info("plddt file: %s", plddt_file) |
|
plddt_vals = np.load(plddt_file)["plddt"] |
|
|
|
return converted_pdb_path, add_plddt_plot(plddt_vals=plddt_vals) |
|
|