jfaustin's picture
tab_1_model_comparison (#2)
b8a625b verified
raw
history blame
9.48 kB
"""Predict protein structure using Folding Studio."""
import hashlib
import logging
import os
from pathlib import Path
import gradio as gr
import numpy as np
import plotly.graph_objects as go
from Bio import SeqIO
from Bio.PDB import PDBIO, MMCIFParser
from folding_studio.client import Client
from folding_studio.query import Query
from folding_studio.query.boltz import BoltzQuery
from folding_studio.query.chai import ChaiQuery
from folding_studio.query.protenix import ProtenixQuery
from folding_studio_data_models import FoldingModel
from folding_studio_demo.model_fasta_validators import (
BaseFastaValidator,
BoltzFastaValidator,
ChaiFastaValidator,
ProtenixFastaValidator,
)
logger = logging.getLogger(__name__)
SEQUENCE_DIR = Path("sequences")
SEQUENCE_DIR.mkdir(parents=True, exist_ok=True)
OUTPUT_DIR = Path("output")
OUTPUT_DIR.mkdir(parents=True, exist_ok=True)
def convert_cif_to_pdb(cif_path: str, pdb_path: str) -> None:
"""Convert a .cif file to .pdb format using Biopython.
Args:
cif_path (str): Path to input .cif file
pdb_path (str): Path to output .pdb file
"""
# Parse the CIF file
parser = MMCIFParser()
structure = parser.get_structure("structure", cif_path)
# Save as PDB
io = PDBIO()
io.set_structure(structure)
io.save(pdb_path)
def add_plddt_plot(plddt_vals: list[float]) -> str:
"""Create a plot of metrics."""
visible = True
plddt_trace = go.Scatter(
x=np.arange(len(plddt_vals)),
y=plddt_vals,
hovertemplate="<i>pLDDT</i>: %{y:.2f} <br><i>Residue index:</i> %{x}<br>",
name="seq",
visible=visible,
)
plddt_fig = go.Figure(data=[plddt_trace])
plddt_fig.update_layout(
title="pLDDT",
xaxis_title="Residue index",
yaxis_title="pLDDT",
height=500,
template="simple_white",
legend=dict(yanchor="bottom", y=0.01, xanchor="left", x=0.99),
)
return plddt_fig
def _write_fasta_file(
sequence: str, directory: Path = SEQUENCE_DIR
) -> tuple[str, Path]:
"""Write sequence to FASTA file.
Args:
sequence (str): Sequence to write to FASTA file
directory (Path): Directory to write FASTA file to (default: SEQUENCE_DIR)
Returns:
tuple[str, Path]: Tuple containing the sequence ID and the path to the FASTA file
"""
seq_id = hashlib.sha1(sequence.encode()).hexdigest()
seq_file = directory / f"sequence_{seq_id}.fasta"
with open(seq_file, "w") as f:
f.write(sequence)
return seq_id, seq_file
class AF3Model:
def __init__(
self, api_key: str, model_name: str, query: Query, validator: BaseFastaValidator
):
self.api_key = api_key
self.model_name = model_name
self.query = query
self.validator = validator
def call(self, seq_file: Path | str, output_dir: Path) -> None:
"""Predict protein structure from amino acid sequence using AF3 model.
Args:
seq_file (Path | str): Path to FASTA file containing amino acid sequence
output_dir (Path): Path to output directory
"""
# Validate FASTA format before calling
is_valid, error_msg = self.check_file_description(seq_file)
if not is_valid:
logger.error(error_msg)
raise gr.Error(error_msg)
# Create a client using API key
logger.info("Authenticating client with API key")
client = Client.from_api_key(api_key=self.api_key)
# Define query
query: Query = self.query.from_file(path=seq_file, query_name="gradio")
query.save_parameters(output_dir)
logger.info("Payload: %s", query.payload)
# Send a request
logger.info(f"Sending {self.model_name} request to Folding Studio API")
response = client.send_request(
query, project_code=os.environ["FOLDING_PROJECT_CODE"]
)
# Access confidence data
logger.info("Confidence data: %s", response.confidence_data)
response.download_results(output_dir=output_dir, force=True, unzip=True)
logger.info("Results downloaded to %s", output_dir)
def format_fasta(self, sequence: str) -> str:
"""Format sequence to FASTA format."""
return f">{self.model_name}\n{sequence}"
def predictions(self, output_dir: Path) -> list[Path]:
"""Get the path to the prediction."""
raise NotImplementedError("Not implemented")
def has_prediction(self, output_dir: Path) -> bool:
"""Check if prediction exists in output directory."""
return any(self.predictions(output_dir))
def check_file_description(self, seq_file: Path | str) -> tuple[bool, str | None]:
"""Check if the file description is correct.
Args:
seq_file (Path | str): Path to FASTA file
Returns:
tuple[bool, str | None]: Tuple containing a boolean indicating if the format is correct and an error message if not
"""
input_rep = list(SeqIO.parse(seq_file, "fasta"))
if not input_rep:
error_msg = f"{self.model_name.upper()} Validation Error: No sequence found"
return False, error_msg
is_valid, error_msg = self.validator.is_valid_fasta(seq_file)
if not is_valid:
return False, error_msg
return True, None
class ChaiModel(AF3Model):
def __init__(self, api_key: str):
super().__init__(api_key, "Chai", ChaiQuery, ChaiFastaValidator())
def call(self, seq_file: Path | str, output_dir: Path) -> None:
"""Predict protein structure from amino acid sequence using Chai model.
Args:
seq_file (Path | str): Path to FASTA file containing amino acid sequence
output_dir (Path): Path to output directory
"""
super().call(seq_file, output_dir)
def predictions(self, output_dir: Path) -> list[Path]:
"""Get the path to the prediction."""
return list(output_dir.rglob("*_model_[0-9].cif"))
class ProtenixModel(AF3Model):
def __init__(self, api_key: str):
super().__init__(api_key, "Protenix", ProtenixQuery, ProtenixFastaValidator())
def call(self, seq_file: Path | str, output_dir: Path) -> None:
"""Predict protein structure from amino acid sequence using Protenix model.
Args:
seq_file (Path | str): Path to FASTA file containing amino acid sequence
output_dir (Path): Path to output directory
"""
super().call(seq_file, output_dir)
def predictions(self, output_dir: Path) -> list[Path]:
"""Get the path to the prediction."""
return list(output_dir.rglob("*_model_[0-9].cif"))
class BoltzModel(AF3Model):
def __init__(self, api_key: str):
super().__init__(api_key, "Boltz", BoltzQuery, BoltzFastaValidator())
def call(self, seq_file: Path | str, output_dir: Path) -> None:
"""Predict protein structure from amino acid sequence using Boltz model.
Args:
seq_file (Path | str): Path to FASTA file containing amino acid sequence
output_dir (Path): Path to output directory
"""
super().call(seq_file, output_dir)
def predictions(self, output_dir: Path) -> list[Path]:
"""Get the path to the prediction."""
return list(output_dir.rglob("*_model_[0-9].cif"))
def predict(sequence: str, api_key: str, model_type: FoldingModel) -> tuple[str, str]:
"""Predict protein structure from amino acid sequence using Boltz model.
Args:
sequence (str): Amino acid sequence to predict structure for
api_key (str): Folding API key
model (FoldingModel): Folding model to use
Returns:
tuple[str, str]: Tuple containing the path to the PDB file and the pLDDT plot
"""
# Set up unique output directory based on sequence hash
seq_id, seq_file = _write_fasta_file(sequence)
output_dir = OUTPUT_DIR / seq_id / model_type
output_dir.mkdir(parents=True, exist_ok=True)
if model_type == FoldingModel.BOLTZ:
model = BoltzModel(api_key)
elif model_type == FoldingModel.CHAI:
model = ChaiModel(api_key)
elif model_type == FoldingModel.PROTENIX:
model = ProtenixModel(api_key)
else:
raise ValueError(f"Model {model_type} not supported")
# Check if prediction already exists
if not model.has_prediction(output_dir):
# Run Boltz prediction
logger.info(f"Predicting {seq_id}")
model.call(seq_file=seq_file, output_dir=output_dir)
logger.info("Prediction done. Output directory: %s", output_dir)
else:
logger.info("Prediction already exists. Output directory: %s", output_dir)
# output_dir = Path("boltz_results") # debug
# Convert output CIF to PDB
if not model.has_prediction(output_dir):
raise gr.Error("No prediction found")
pred_cif = model.predictions(output_dir)[0]
logger.info("Output file: %s", pred_cif)
converted_pdb_path = str(output_dir / f"pred_{seq_id}.pdb")
convert_cif_to_pdb(str(pred_cif), str(converted_pdb_path))
logger.info("Converted PDB file: %s", converted_pdb_path)
plddt_file = list(pred_cif.parent.glob("plddt_*.npz"))[0]
logger.info("plddt file: %s", plddt_file)
plddt_vals = np.load(plddt_file)["plddt"]
return converted_pdb_path, add_plddt_plot(plddt_vals=plddt_vals)