jfaustin commited on
Commit
c08afad
·
1 Parent(s): 8192214

prettify scores

Browse files
Files changed (1) hide show
  1. folding_studio_demo/correlate.py +28 -23
folding_studio_demo/correlate.py CHANGED
@@ -7,29 +7,31 @@ from scipy.stats import spearmanr, pearsonr, linregress
7
 
8
  logger = logging.getLogger(__name__)
9
 
10
- SCORE_COLUMNS = [
11
- "confidence_score_boltz",
12
- "ptm_boltz",
13
- "iptm_boltz",
14
- "complex_plddt_boltz",
15
- "complex_iplddt_boltz",
16
- "complex_pde_boltz",
17
- "complex_ipde_boltz",
18
- "interchain_pae_monomer",
19
- "interface_pae_monomer",
20
- "overall_pae_monomer",
21
- "interface_plddt_monomer",
22
- "average_plddt_monomer",
23
- "ptm_monomer",
24
- "interface_ptm_monomer",
25
- "interchain_pae_multimer",
26
- "interface_pae_multimer",
27
- "overall_pae_multimer",
28
- "interface_plddt_multimer",
29
- "average_plddt_multimer",
30
- "ptm_multimer",
31
- "interface_ptm_multimer"
32
- ]
 
 
33
 
34
  def compute_correlation_data(spr_data_with_scores: pd.DataFrame, score_cols: list[str]) -> pd.DataFrame:
35
  corr_data_file = Path("corr_data.csv")
@@ -93,6 +95,9 @@ def plot_correlation_ranking(corr_data: pd.DataFrame, correlation_type: str) ->
93
  def fake_predict_and_correlate(spr_data_with_scores: pd.DataFrame, score_cols: list[str], main_cols: list[str]) -> tuple[pd.DataFrame, go.Figure]:
94
  """Fake predict structures of all complexes and correlate the results."""
95
 
 
 
 
96
  corr_data = compute_correlation_data(spr_data_with_scores, score_cols)
97
  corr_ranking_plot = plot_correlation_ranking(corr_data, "Spearman")
98
 
 
7
 
8
  logger = logging.getLogger(__name__)
9
 
10
+ SCORE_COLUMN_NAMES = {
11
+ "confidence_score_boltz": "Boltz Confidence Score",
12
+ "ptm_boltz": "Boltz pTM Score",
13
+ "iptm_boltz": "Boltz ipTM Score",
14
+ "complex_plddt_boltz": "Boltz Complex pLDDT",
15
+ "complex_iplddt_boltz": "Boltz Complex ipLDDT",
16
+ "complex_pde_boltz": "Boltz Complex pDE",
17
+ "complex_ipde_boltz": "Boltz Complex ipDE",
18
+ "interchain_pae_monomer": "Monomer Interchain PAE",
19
+ "interface_pae_monomer": "Monomer Interface PAE",
20
+ "overall_pae_monomer": "Monomer Overall PAE",
21
+ "interface_plddt_monomer": "Monomer Interface pLDDT",
22
+ "average_plddt_monomer": "Monomer Average pLDDT",
23
+ "ptm_monomer": "Monomer pTM Score",
24
+ "interface_ptm_monomer": "Monomer Interface pTM",
25
+ "interchain_pae_multimer": "Multimer Interchain PAE",
26
+ "interface_pae_multimer": "Multimer Interface PAE",
27
+ "overall_pae_multimer": "Multimer Overall PAE",
28
+ "interface_plddt_multimer": "Multimer Interface pLDDT",
29
+ "average_plddt_multimer": "Multimer Average pLDDT",
30
+ "ptm_multimer": "Multimer pTM Score",
31
+ "interface_ptm_multimer": "Multimer Interface pTM"
32
+ }
33
+
34
+ SCORE_COLUMNS = list(SCORE_COLUMN_NAMES.values())
35
 
36
  def compute_correlation_data(spr_data_with_scores: pd.DataFrame, score_cols: list[str]) -> pd.DataFrame:
37
  corr_data_file = Path("corr_data.csv")
 
95
  def fake_predict_and_correlate(spr_data_with_scores: pd.DataFrame, score_cols: list[str], main_cols: list[str]) -> tuple[pd.DataFrame, go.Figure]:
96
  """Fake predict structures of all complexes and correlate the results."""
97
 
98
+ # Rename score columns using the mapping in SCORE_COLUMN_NAMES
99
+ spr_data_with_scores = spr_data_with_scores.rename(columns=SCORE_COLUMN_NAMES)
100
+
101
  corr_data = compute_correlation_data(spr_data_with_scores, score_cols)
102
  corr_ranking_plot = plot_correlation_ranking(corr_data, "Spearman")
103