# -*- coding: utf-8 -*- from . import logger import matplotlib as mpl mpl.use('Agg') import matplotlib.pyplot as plt import numpy as np import re import os import warnings import json from os.path import join from collections import OrderedDict _name = "postProc" def params(): """ Sets some global parameters for the plots :return: None """ plt.rcParams['axes.facecolor'] = 'f5f5f5' plt.rcParams['axes.edgecolor'] = '0.45' plt.rcParams['axes.axisbelow'] = True plt.rcParams['axes.labelcolor'] = '0.45' plt.rcParams['text.color'] = '0.45' plt.rcParams['xtick.color'] = '0.45' plt.rcParams['ytick.color'] = '0.45' plt.rcParams['xtick.major.pad'] = 4 plt.rcParams['ytick.major.pad'] = 5 plt.rcParams['xtick.major.width'] = 1 plt.rcParams['ytick.major.width'] = 1 def get_scores(out_file): """ :param out_file: path to a csv file generated by Aggrescan3D :return: dictionary - {chainID:[residue ID, agg3d score, residue label]}, dictionary - {chainID:{"min_value":val,"max_value":val, "total_value":val,"avg_value":val}} """ pattern = re.compile(r"^(.*),(.*),(.*),(.*),(.*)$", re.M) with open(out_file, 'r') as f: data = pattern.findall(f.read().replace("\r", ""))[1:] chains = set([i[1] for i in data]) chains.add("All") dat = OrderedDict() scores = OrderedDict() stats = OrderedDict() resNumber = 1 for chain_id in chains: dat[chain_id] = [] scores[chain_id] = [] for line in data: if len(line) != 5: continue chain = line[1] label = line[3] + line[2] # One letter code + residue ID aggScore = float(line[4]) scores[chain].append(aggScore) scores["All"].append(aggScore) if abs(aggScore) > 1e-10: # Skip residues with 0 score dat[chain].append((resNumber, aggScore, label)) dat["All"].append((resNumber, aggScore, label)) resNumber += 1 for chain in chains: min3d = min(scores[chain]) max3d = max(scores[chain]) sum3d = np.sum(scores[chain]) avg3d = np.round(sum3d / len(scores[chain]), decimals=4) stats[chain] = {"min_value": min3d, "max_value": max3d, "total_value": sum3d, "avg_value": avg3d} return dat, stats def make_plots(data=None, work_dir="", get_figure=False): """ Creates png and svg plots of Aggrescan3D scores for a single chain :param data: dictionary - {chainID:[residue ID, agg3d score, residue label]} :param work_dir: directory where the plots will be saved :param get_figure: if set to True, will return the figure :return: None or plt.figure object """ warnings.simplefilter("ignore") for chain in list(data.keys()): if chain != "All": dat = data[chain] params() fig = plt.figure(figsize=(10, 6.6)) x = np.array([l[0] for l in dat]) y = np.array([l[1] for l in dat]) l = np.array([l[2] for l in dat]) plt.xlabel("Residue") plt.ylabel("Score") plt.axhline(linewidth=1, color='0.45', linestyle='--') plt.xticks(x[1::10], l[1::10], rotation=35, fontsize='small') plt.title("A3D profile | chain " + chain) plt.axis(ymin=-4, ymax=4, xmin=min(x) - 2, xmax=max(x) + 2) plt.plot(x, y, linewidth=1.5, alpha=0.75, marker='o', mec='None') plt.grid(alpha=0.5, color='0.9', linewidth=1, linestyle='--') for x, y, l in zip(x, y, l): if float(y) > 0.0: plt.annotate(l, xy=(x, y), xytext=(1, 1), alpha=0.5, fontsize='small', gid="label_" + str(x), textcoords='offset points') logger.log_file(module_name=_name,msg="Saving plots as %s.png and %s.svg" % (chain, chain)) plt.savefig(os.path.join(work_dir, "%s.png" % chain), format="png") plt.savefig(os.path.join(work_dir, "%s.svg" % chain), format="svg") if get_figure: return fig def make_auto_mut_plot(work_dir=""): """ Create a collective plot of mutants and the wild type, this is mostly a copy paste from server plot into mpl #TODO actually use fig axes object rather than plt like that """ _target_mutations = ["E", "K", "D", "R"] # This should mirror one in auto_mutation but can't be imported because they also import this first warnings.simplefilter("ignore") mutants = [] with open(join(work_dir, "Mutations_summary.csv"), "r") as f: f.readline() for line in f: mutants.append(line.split(",")[0]) with open(join(work_dir, "A3D.csv"), 'r') as f: f.readline() # skip the initial line with labels wild_labels, wild_y = [], [] for line in f: a = line.strip().split(',') # a goes as follows: model name, chain, index, one letter code, aggrescan score wild_labels.append(("Chain %s" % a[1], a[2] + a[3])) wild_y.append(float(a[-1])) wild_x = [i for i in range(len(wild_y))] while mutants: data = OrderedDict() one_r_mutated = [] mutated = mutants[0][0] for mutant in mutants[:]: # Create a slice to prevent the iterator from skipping itmes if mutant[0] == mutated: one_r_mutated.append(mutants.pop(mutants.index(mutant))) # Mutations are 'guaranteed' to be unique data["Wild_type"] = [wild_x, wild_y, wild_labels] for mutant in one_r_mutated: with open(join(work_dir, mutant + ".csv"), 'r') as f: f.readline() # skip the initial line with labels labels, y = [], [] for line in f: a = line.strip().split(',') # a goes as follows: model name, chain, index, one letter code, aggrescan score labels.append(("Chain %s" % a[1], a[2]+a[3])) y.append(float(a[-1])) x = [i for i in range(len(y))] data[mutant] = [x, y, labels] _plot(data, work_dir, filename="%s_mutants" % mutant[2:]) def _plot(data, work_dir, filename): params() fig = plt.figure(figsize=(10, 6.6)) plt.ylabel("Score") plt.axhline(linewidth=1, color='0.45', linestyle='--') plt.title("A3D mutations profile") plt.grid(alpha=0.5, color='0.9', linewidth=1, linestyle='--') for key, value in data.items(): x, y, labels = value plt.plot(x, y, label=key, linewidth=1.5, alpha=0.75, marker='o', mec='None') plt.xticks(x[1::10], labels[1::10], rotation=35, fontsize='small') logger.log_file(module_name=_name, msg="Saving auto mutation plots to %s (svg and png)" % filename) plt.legend(bbox_to_anchor=(1.05, 1), loc=2, borderaxespad=0.) plt.savefig(os.path.join(work_dir, filename + ".png"), format="png", bbox_inches='tight') plt.savefig(os.path.join(work_dir, filename + ".svg"), format="svg", bbox_inches='tight') plt.close() def append_scores(a3d="", in_pdb="", out_pdb="", work_dir=""): """ Replaces the last field in pdb file with Aggrescan3D score :param a3d: filepath to a csv aggrescan-formatted file with scores :param in_pdb: filepath to a input pdb file :param out_pdb: fielapth to which the output will be written :param work_dir: Output directory :return: None """ rec = re.compile(r"^(.*),(.*),(.*),(.*),(.*)$", re.M) amino_a_dict ={'A': 'ALA', 'R': 'ARG','N': 'ASN','D': 'ASP','C': 'CYS','E': 'GLU', 'Q': 'GLN','G': 'GLY','H': 'HIS','I': 'ILE','L': 'LEU','K': 'LYS', 'M': 'MET','F': 'PHE','P': 'PRO','S': 'SER','T':'THR','W': 'TRP', 'Y': 'TYR', 'V': 'VAL','X': 'UNK'} with open(a3d, "r") as agg_out_fh, open(in_pdb, "r") as p: block = p.read() d = rec.findall(agg_out_fh.read().replace("\r", ""))[1:] for r in d: amino_acid = amino_a_dict[r[3]] agg_score = "%6.2f" % (float(r[4])) res_details = "%3s %1s%4s" % (amino_acid, r[1], r[2]) # 3 letter code, chain ID, res ID block = re.sub(r'(?<=^ATOM.{13}'+res_details+'.{34})(.*)$', agg_score, block, flags=re.M) logger.to_file(filename=os.path.join(work_dir, out_pdb), content=block) def save_stats(data="", work_dir="", output="statistics"): """ Saves statistcs of the Aggrescan3D scores calculations :param data: string - JSON generated by get_scores, formatted like: {chainID:{"min_value":val,"max_value":val,"total_value":val,"avg_value":val}} :param work_dir: Output directory :param output: outputs filename :return: None """ logger.to_file(filename=os.path.join(work_dir, output), content=data) def prepare_output(work_dir="", final=True, model_name="", scores_to_pdb=False, get_data=False): """ Calls make_plots, save_stats and append_scores, see details there :param work_dir: Working dir of Aggrescan3D run :param final: [bool] if True data is plotted and output.pdb generated to work_dir :param model_name: [string] filename of the currently analyzed pdb file (without the .pdb part) :param scores_to_pdb: [bool] Decide if a3d score should be pun in the file's bfactor place :return: dictionary - {chainID: {"min_value" : val, "max_value" : val, "total_value" : val, "avg_value" : val}} """ data, stats = get_scores(os.path.join(work_dir, "A3D.csv")) save_stats(data=json.dumps(stats), output=model_name + "_stats", work_dir=work_dir) if scores_to_pdb: append_scores(a3d=os.path.join(work_dir, "A3D.csv"), in_pdb=model_name + ".pdb", out_pdb=model_name+".pdb", work_dir=work_dir) if final: make_plots(data=data, work_dir=work_dir) append_scores(a3d=os.path.join(work_dir, "A3D.csv"), in_pdb=os.path.join(work_dir, "folded.pdb"), out_pdb=os.path.join(work_dir, "output.pdb"), work_dir=work_dir) if get_data: return data, stats return stats