"""Predict protein structure using Folding Studio.""" import concurrent.futures import hashlib import logging from io import StringIO from pathlib import Path from typing import Any import gradio as gr import numpy as np import plotly.graph_objects as go from Bio import SeqIO from Bio.PDB import PDBIO, MMCIFParser, PDBParser, Superimposer from folding_studio_data_models import FoldingModel from folding_studio_demo.models import ( AF2Model, BoltzModel, ChaiModel, OpenFoldModel, ProtenixModel, ) logger = logging.getLogger(__name__) SEQUENCE_DIR = Path("sequences") SEQUENCE_DIR.mkdir(parents=True, exist_ok=True) OUTPUT_DIR = Path("output") OUTPUT_DIR.mkdir(parents=True, exist_ok=True) THREE_TO_ONE_LETTER = { "ALA": "A", "ARG": "R", "ASN": "N", "ASP": "D", "CYS": "C", "GLN": "Q", "GLU": "E", "GLY": "G", "HIS": "H", "ILE": "I", "LEU": "L", "LYS": "K", "MET": "M", "PHE": "F", "PRO": "P", "SER": "S", "THR": "T", "TRP": "W", "TYR": "Y", "VAL": "V", "SEC": "U", "PYL": "O", "ASX": "B", "GLX": "Z", "XAA": "X", "XLE": "J", "UNK": "X", } def convert_to_one_letter(resname: str) -> str: """Convert three-letter amino acid code to one-letter code. Args: resname (str): Three-letter amino acid code Returns: str: One-letter amino acid code """ return THREE_TO_ONE_LETTER.get(resname, "X") def convert_cif_to_pdb(cif_path: str, pdb_path: str) -> None: """Convert a .cif file to .pdb format using Biopython. Args: cif_path (str): Path to input .cif file pdb_path (str): Path to output .pdb file """ # Parse the CIF file parser = MMCIFParser() structure = parser.get_structure("structure", cif_path) # Save as PDB io = PDBIO() io.set_structure(structure) io.save(pdb_path) def create_plddt_figure( plddt_vals: list[dict[str, dict[str, list[float]]]], model_name: str, indexes: list[int], ) -> go.Figure: """Create a plot of metrics.""" plddt_traces = [] for i, (pred_plddt, index) in enumerate(zip(plddt_vals, indexes)): hover_text = [] plddt_values = [] for chain_id, plddt_val in pred_plddt.items(): plddt_values += plddt_val["values"] hover_text += [ f"{model_name} {index} - Chain {chain_id}
pLDDT: {plddt:.2f}
Residue: {code} {idx}" for idx, (plddt, code) in enumerate( zip(plddt_val["values"], plddt_val["residue_codes"]) ) ] plddt_traces.append( go.Scatter( x=np.arange(len(plddt_values)), y=plddt_values, hovertemplate="%{text}", text=hover_text, name=f"{model_name} {index}", visible=True, ) ) plddt_fig = go.Figure(data=plddt_traces) plddt_fig.update_layout( title="pLDDT", xaxis_title="Residue", yaxis_title="pLDDT", height=500, template="simple_white", legend=dict(yanchor="bottom", y=0.01, xanchor="left", x=0.99), ) return plddt_fig def _write_fasta_file( sequence: str, directory: Path = SEQUENCE_DIR ) -> tuple[str, Path]: """Write sequence to FASTA file. Args: sequence (str): Sequence to write to FASTA file directory (Path): Directory to write FASTA file to (default: SEQUENCE_DIR) Returns: tuple[str, Path]: Tuple containing the sequence ID and the path to the FASTA file """ input_rep = list(SeqIO.parse(StringIO(sequence), "fasta")) if not input_rep: raise gr.Error("No sequence found") seq_id = hashlib.sha256( "_".join([str(records.seq) for records in input_rep]).encode() ).hexdigest() seq_file = directory / f"sequence_{seq_id}.fasta" with open(seq_file, "w") as f: f.write(sequence) return seq_id, seq_file def extract_plddt_from_structure( structure_path: str, ) -> dict[str, dict[str, list[float]]]: """Extract pLDDT values and residue codes from a structure file. Args: structure_path (Path): Path to structure file Returns: tuple[list[float], list[str]]: Tuple containing lists of pLDDT values and residue codes """ if Path(structure_path).suffix == ".cif": structure = MMCIFParser().get_structure("structure", structure_path) else: structure = PDBParser().get_structure("structure", structure_path) # Lists to store pLDDT values and residue codes plddt_values = {} # Iterate through all atoms for model in structure: for chain in model: plddt_values[chain.id] = {"values": [], "residue_codes": []} for residue in chain: # Get the first atom of each residue (usually CA atom) if "CA" in residue: # The B-factor contains the pLDDT value plddt = residue["CA"].get_bfactor() plddt_values[chain.id]["values"].append(plddt) # Get residue code and convert to one-letter code plddt_values[chain.id]["residue_codes"].append( convert_to_one_letter(residue.get_resname()) ) return plddt_values def predict( sequence: str, api_key: str, model_type: FoldingModel, format_fasta: bool = False, progress=gr.Progress(), ) -> tuple[str, str]: """Predict protein structure from amino acid sequence using Boltz model. Args: sequence (str): Amino acid sequence to predict structure for api_key (str): Folding API key model (FoldingModel): Folding model to use format_fasta (bool): Whether to format the FASTA file progress (gr.Progress): Gradio progress tracker Returns: tuple[str, str]: Tuple containing the path to the PDB file and the pLDDT plot """ if not api_key: raise gr.Error("Missing API key, please enter a valid API key") progress(0, desc="Setting up prediction...") # Set up unique output directory based on sequence hash seq_id, seq_file = _write_fasta_file(sequence) output_dir = OUTPUT_DIR / seq_id / model_type output_dir.mkdir(parents=True, exist_ok=True) if model_type == FoldingModel.BOLTZ: model = BoltzModel(api_key) elif model_type == FoldingModel.CHAI: model = ChaiModel(api_key) elif model_type == FoldingModel.PROTENIX: model = ProtenixModel(api_key) elif model_type == FoldingModel.AF2: model = AF2Model(api_key) elif model_type == FoldingModel.OPENFOLD: model = OpenFoldModel(api_key) else: raise ValueError(f"Model {model_type} not supported") # Check if prediction already exists if not model.has_prediction(output_dir): progress(0.2, desc="Running prediction...") # Run prediction logger.info(f"Predicting {seq_id}") model.call(seq_file=seq_file, output_dir=output_dir, format_fasta=format_fasta) logger.info("Prediction done. Output directory: %s", output_dir) else: progress(0.2, desc="Using existing prediction...") logger.info("Prediction already exists. Output directory: %s", output_dir) progress(0.4, desc="Processing results...") # Convert output CIF to PDB if not model.has_prediction(output_dir): raise gr.Error("No prediction found") predictions = model.predictions(output_dir) pdb_paths = [] model_plddt_vals = [] total_predictions = len(predictions) for i, (model_idx, prediction) in enumerate(predictions.items()): progress( 0.4 + (0.4 * i / total_predictions), desc=f"Converting model {model_idx}..." ) prediction_path = prediction["prediction_path"] logger.info(f"Prediction file: {prediction_path}") if Path(prediction_path).suffix == ".cif": converted_pdb_path = str( output_dir / f"{model.model_name}_prediction_{model_idx}.pdb" ) convert_cif_to_pdb(str(prediction_path), str(converted_pdb_path)) pdb_paths.append(converted_pdb_path) else: pdb_paths.append(str(prediction_path)) plddt_vals = extract_plddt_from_structure(prediction_path) model_plddt_vals.append(plddt_vals) progress(0.8, desc="Generating plots...") indexes = [] for pdb_path in pdb_paths: if model_type in [ FoldingModel.AF2, FoldingModel.OPENFOLD, FoldingModel.SOLOSEQ, ]: indexes.append(int(Path(pdb_path).stem.split("_")[2])) else: indexes.append(int(Path(pdb_path).stem[-1])) plddt_fig = create_plddt_figure( plddt_vals=model_plddt_vals, model_name=model.model_name, indexes=indexes, ) progress(1.0, desc="Done!") return pdb_paths, plddt_fig def align_structures( model_predictions: dict[FoldingModel, dict[int, dict[str, Any]]], ) -> list[str]: """Align multiple PDB structures to the first structure. Args: model_predictions (dict[FoldingModel, dict[int, dict[str, Any]]]): Dictionary mapping models to their prediction indices Returns: list[str]: List of paths to aligned PDB files """ parser = PDBParser() io = PDBIO() # Get the first structure as reference first_model = next(iter(model_predictions.keys())) first_pred = next(iter(model_predictions[first_model].values())) ref_pdb_path = first_pred["pdb_path"] # Parse reference structure and get CA atoms ref_structure = parser.get_structure("reference", ref_pdb_path) ref_atoms = [atom for atom in ref_structure.get_atoms() if atom.get_name() == "CA"] for model_type in model_predictions.keys(): for index, prediction in model_predictions[model_type].items(): pdb_path = prediction["pdb_path"] # Parse the structure to align structure = parser.get_structure(f"{model_type}_{index}", pdb_path) atoms = [atom for atom in structure.get_atoms() if atom.get_name() == "CA"] # Create superimposer sup = Superimposer() # Set the reference and moving atoms sup.set_atoms(ref_atoms, atoms) # Apply the transformation to all atoms in the structure sup.apply(structure.get_atoms()) # Save the aligned structure aligned_path = str(Path(pdb_path).parent / f"aligned_{Path(pdb_path).name}") io.set_structure(structure) io.save(aligned_path) model_predictions[model_type][index]["pdb_path"] = aligned_path return model_predictions def filter_predictions( model_predictions: dict[FoldingModel, dict[int, dict[str, Any]]], af2_selected: list[int], openfold_selected: list[int], solo_selected: list[int], chai_selected: list[int], boltz_selected: list[int], protenix_selected: list[int], ) -> tuple[list[str], go.Figure]: """Filter predictions based on selected checkboxes. Args: aligned_paths (list[str]): List of aligned PDB paths plddt_fig (go.Figure): Original pLDDT plot chai_selected (list[int]): Selected Chai model indices boltz_selected (list[int]): Selected Boltz model indices protenix_selected (list[int]): Selected Protenix model indices model_predictions (dict[FoldingModel, dict[int, dict[str, Any]]]): Dictionary mapping models to their prediction indices Returns: tuple[list[str], go.Figure]: Filtered PDB paths and updated pLDDT plot """ # Create a new figure with only selected traces filtered_fig = go.Figure() # Keep track of which traces to show filtered_paths = [] # Helper function to check if a trace should be visible def should_show_trace(model_name, pred_index: int) -> bool: if model_name == FoldingModel.CHAI and pred_index in chai_selected: return True if model_name == FoldingModel.BOLTZ and pred_index in boltz_selected: return True if model_name == FoldingModel.PROTENIX and pred_index in protenix_selected: return True if model_name == FoldingModel.AF2 and pred_index in af2_selected: return True if model_name == FoldingModel.OPENFOLD and pred_index in openfold_selected: return True if model_name == FoldingModel.SOLOSEQ and pred_index in solo_selected: return True return False # Filter traces and paths for model_type in model_predictions.keys(): for index, prediction in model_predictions[model_type].items(): if should_show_trace(model_type, index): filtered_fig.add_trace(prediction["plddt_trace"]) filtered_paths.append(prediction["pdb_path"]) # Update layout filtered_fig.update_layout( title="pLDDT", xaxis_title="Residue index", yaxis_title="pLDDT", height=500, template="simple_white", legend=dict(yanchor="bottom", y=0.01, xanchor="left", x=0.99), ) return filtered_paths, filtered_fig def run_prediction( sequence: str, api_key: str, model_type: FoldingModel, format_fasta: bool = False, ) -> dict[FoldingModel, dict[int, dict[str, Any]]]: """Run a single prediction. Args: sequence (str): Amino acid sequence to predict structure for api_key (str): Folding API key model_type (FoldingModel): Folding model to use format_fasta (bool): Whether to format the FASTA file Returns: Tuple containing: - List of PDB paths - pLDDT plot - Dictionary mapping model to prediction indices """ model_pdb_paths, model_plddt_traces = predict( sequence, api_key, model_type, format_fasta=format_fasta ) model_predictions = {} for pdb_path, plddt_traces in zip(model_pdb_paths, model_plddt_traces.data): if model_type in [ FoldingModel.AF2, FoldingModel.OPENFOLD, FoldingModel.SOLOSEQ, ]: index = int(Path(pdb_path).stem.split("_")[2]) else: index = int(Path(pdb_path).stem[-1]) model_predictions[index] = {"pdb_path": pdb_path, "plddt_trace": plddt_traces} return model_predictions def predict_comparison( sequence: str, api_key: str, model_types: list[FoldingModel], progress=gr.Progress() ) -> tuple[ dict[FoldingModel, dict[int, dict[str, Any]]], gr.CheckboxGroup, gr.CheckboxGroup, gr.CheckboxGroup, gr.CheckboxGroup, gr.CheckboxGroup, gr.CheckboxGroup, ]: """Predict protein structure from amino acid sequence using multiple models. Args: sequence (str): Amino acid sequence to predict structure for api_key (str): Folding API key model_types (list[FoldingModel]): List of folding models to use progress (gr.Progress): Gradio progress tracker Returns: tuple containing: - dict[FoldingModel, dict[int, dict[str, Any]]]: Model predictions mapping - gr.CheckboxGroup: AF2 predictions checkbox group - gr.CheckboxGroup: OpenFold predictions checkbox group - gr.CheckboxGroup: SoloSeq predictions checkbox group - gr.CheckboxGroup: Chai predictions checkbox group - gr.CheckboxGroup: Boltz predictions checkbox group - gr.CheckboxGroup: Protenix predictions checkbox group """ if not api_key: raise gr.Error("Missing API key, please enter a valid API key") progress(0, desc="Starting parallel predictions...") # Run predictions in parallel model_predictions = {} with concurrent.futures.ThreadPoolExecutor() as executor: # Create a future for each model prediction future_to_model = { executor.submit( run_prediction, sequence, api_key, model_type, True ): model_type for model_type in model_types } # Process results as they complete total_models = len(model_types) completed = 0 for future in concurrent.futures.as_completed(future_to_model): model_type = future_to_model[future] try: model_preds = future.result() model_predictions[model_type] = model_preds completed += 1 progress( completed / total_models, desc=f"Completed {model_type} prediction...", ) except Exception as e: logger.error(f"Prediction failed for {model_type}: {str(e)}") raise gr.Error(f"Prediction failed for {model_type}: {str(e)}") progress(0.9, desc="Aligning structures...") model_predictions = align_structures(model_predictions) progress(1.0, desc="Done!") # Create checkbox groups for each model type af2_predictions = gr.CheckboxGroup( visible=model_predictions.get(FoldingModel.AF2) is not None, choices=list(model_predictions.get(FoldingModel.AF2, {}).keys()), value=list(model_predictions.get(FoldingModel.AF2, {}).keys()), ) openfold_predictions = gr.CheckboxGroup( visible=model_predictions.get(FoldingModel.OPENFOLD) is not None, choices=list(model_predictions.get(FoldingModel.OPENFOLD, {}).keys()), value=list(model_predictions.get(FoldingModel.OPENFOLD, {}).keys()), ) solo_predictions = gr.CheckboxGroup( visible=model_predictions.get(FoldingModel.SOLOSEQ) is not None, choices=list(model_predictions.get(FoldingModel.SOLOSEQ, {}).keys()), value=list(model_predictions.get(FoldingModel.SOLOSEQ, {}).keys()), ) chai_predictions = gr.CheckboxGroup( visible=model_predictions.get(FoldingModel.CHAI) is not None, choices=list(model_predictions.get(FoldingModel.CHAI, {}).keys()), value=list(model_predictions.get(FoldingModel.CHAI, {}).keys()), ) boltz_predictions = gr.CheckboxGroup( visible=model_predictions.get(FoldingModel.BOLTZ) is not None, choices=list(model_predictions.get(FoldingModel.BOLTZ, {}).keys()), value=list(model_predictions.get(FoldingModel.BOLTZ, {}).keys()), ) protenix_predictions = gr.CheckboxGroup( visible=model_predictions.get(FoldingModel.PROTENIX) is not None, choices=list(model_predictions.get(FoldingModel.PROTENIX, {}).keys()), value=list(model_predictions.get(FoldingModel.PROTENIX, {}).keys()), ) return ( model_predictions, af2_predictions, openfold_predictions, solo_predictions, chai_predictions, boltz_predictions, protenix_predictions, )