"""Models for the Folding Studio API.""" import json import logging import os import sys import time from io import StringIO from pathlib import Path from typing import Any import gradio as gr import numpy as np from folding_studio import single_job_prediction from folding_studio.client import Client from folding_studio.commands.experiment import results as get_results from folding_studio.commands.experiment import status as get_status from folding_studio.query import Query from folding_studio.query.boltz import BoltzQuery from folding_studio.query.chai import ChaiQuery from folding_studio.query.protenix import ProtenixQuery from folding_studio_data_models import AF2Parameters, OpenFoldParameters from folding_studio_data_models.parameters.base import BaseFoldingParameters from folding_studio_demo.model_fasta_validators import ( BaseFastaValidator, BoltzFastaValidator, ChaiFastaValidator, ProtenixFastaValidator, ) class Capturing(list): """Capture stdout output.""" def __enter__(self): self._stdout = sys.stdout sys.stdout = self._stringio = StringIO() return self def __exit__(self, *args): self.extend(self._stringio.getvalue().splitlines()) del self._stringio # free up some memory sys.stdout = self._stdout logger = logging.getLogger(__name__) class AF3Model: model_name = None def __init__(self, api_key: str, query: Query, validator: BaseFastaValidator): self.api_key = api_key self.query = query self.validator = validator def call( self, seq_file: Path | str, output_dir: Path, format_fasta: bool = False ) -> None: """Predict protein structure from amino acid sequence using AF3 model. Args: seq_file (Path | str): Path to FASTA file containing amino acid sequence output_dir (Path): Path to output directory format_description (bool): Whether to format the description of the sequence """ # Validate FASTA format before calling is_valid, error_msg = self.check_file_description(seq_file) if format_fasta and not is_valid: logger.info("Invalid FASTA file format, forcing formatting...") self.format_fasta(seq_file) elif not is_valid: logger.error(error_msg) raise gr.Error(error_msg) # Create a client using API key logger.info("Authenticating client with API key") client = Client.from_api_key(api_key=self.api_key) # Define query query: Query = self.query.from_file(path=seq_file, query_name="gradio") query.save_parameters(output_dir) logger.info("Payload: %s", query.payload) # Send a request logger.info(f"Sending {self.model_name} request to Folding Studio API") response = client.send_request( query, project_code=os.environ["FOLDING_PROJECT_CODE"] ) # Access confidence data logger.info("Confidence data: %s", response.confidence_data) response.download_results(output_dir=output_dir, force=True, unzip=True) logger.info("Results downloaded to %s", output_dir) def format_fasta(self, seq_file: Path | str) -> None: """Format sequence to FASTA format. Args: seq_file (Path | str): Path to FASTA file """ formatted_fasta = self.validator.transform_fasta(seq_file) with open(seq_file, "w") as f: f.write(formatted_fasta) def predictions(self, output_dir: Path) -> list[Path]: """Get the path to the prediction. Args: output_dir (Path): Path to output directory Returns: list[Path]: List of paths to predictions """ raise NotImplementedError() def has_prediction(self, output_dir: Path) -> bool: """Check if prediction exists in output directory.""" return len(self.predictions(output_dir)) > 0 def check_file_description(self, seq_file: Path | str) -> tuple[bool, str | None]: """Check if the file description is correct. Args: seq_file (Path | str): Path to FASTA file Returns: tuple[bool, str | None]: Tuple containing a boolean indicating if the format is correct and an error message if not """ is_valid, error_msg = self.validator.is_valid_fasta(seq_file) if not is_valid: return False, error_msg return True, None class ChaiModel(AF3Model): model_name = "Chai" def __init__(self, api_key: str): super().__init__(api_key, ChaiQuery, ChaiFastaValidator()) def call( self, seq_file: Path | str, output_dir: Path, format_fasta: bool = False ) -> None: """Predict protein structure from amino acid sequence using Chai model. Args: seq_file (Path | str): Path to FASTA file containing amino acid sequence output_dir (Path): Path to output directory format_fasta (bool): Whether to format the FASTA file """ super().call(seq_file, output_dir, format_fasta) def predictions(self, output_dir: Path) -> dict[Path, dict[str, Any]]: """Get the path to the prediction.""" prediction = next(output_dir.rglob("pred.model_idx_[0-9].cif"), None) if prediction is None: return {} cif_files = { int(f.stem.split("model_idx_")[1]): f for f in prediction.parent.glob("pred.model_idx_*.cif") } # Get all npz files and extract their indices npz_files = { int(f.stem.split("model_idx_")[1]): f for f in prediction.parent.glob("scores.model_idx_*.npz") } # Find common indices and create pairs common_indices = sorted(set(cif_files.keys()) & set(npz_files.keys())) return { idx: {"prediction_path": cif_files[idx], "metrics": np.load(npz_files[idx])} for idx in common_indices } class ProtenixModel(AF3Model): model_name = "Protenix" def __init__(self, api_key: str): super().__init__(api_key, ProtenixQuery, ProtenixFastaValidator()) def call( self, seq_file: Path | str, output_dir: Path, format_fasta: bool = False ) -> None: """Predict protein structure from amino acid sequence using Protenix model. Args: seq_file (Path | str): Path to FASTA file containing amino acid sequence output_dir (Path): Path to output directory format_fasta (bool): Whether to format the FASTA file """ super().call(seq_file, output_dir, format_fasta) def predictions(self, output_dir: Path) -> list[Path]: """Get the path to the prediction.""" return list(output_dir.rglob("*_model_[0-9].cif")) class BoltzModel(AF3Model): model_name = "Boltz" def __init__(self, api_key: str): super().__init__(api_key, BoltzQuery, BoltzFastaValidator()) def call( self, seq_file: Path | str, output_dir: Path, format_fasta: bool = False ) -> None: """Predict protein structure from amino acid sequence using Boltz model. Args: seq_file (Path | str): Path to FASTA file containing amino acid sequence output_dir (Path): Path to output directory format_fasta (bool): Whether to format the FASTA file """ super().call(seq_file, output_dir, format_fasta) def predictions(self, output_dir: Path) -> list[Path]: """Get the path to the prediction.""" prediction_paths = list(output_dir.rglob("*_model_[0-9].cif")) return { int(cif_path.stem[-1]): { "prediction_path": cif_path, "metrics": np.load(list(cif_path.parent.glob("plddt_*.npz"))[0]), } for cif_path in prediction_paths } class OldModel: model_name = None def __init__(self, api_key: str): self.api_key = api_key def call( self, seq_file: Path | str, output_dir: Path, parameters: BaseFoldingParameters, *args, **kwargs, ) -> None: """Predict protein structure from amino acid sequence using AF2 model. Args: seq_file (Path | str): Path to FASTA file containing amino acid sequence output_dir (Path): Path to output directory """ output = single_job_prediction( fasta_file=seq_file, parameters=parameters, ) experiment_id = output["message"]["experiment_id"] done = False while not done: with Capturing() as output: get_status(experiment_id) status = output[0] logger.info(f"Experiment {experiment_id} status: {status}") if status == "Done": done = True logger.info("Downloading results") get_results( experiment_id, force=True, unzip=True, output=output_dir / "results.zip", ) logger.info("Results downloaded to %s", output_dir) else: logger.info("Sleeping for 10 seconds") time.sleep(10) def format_fasta(self, seq_file: Path | str) -> None: """Format sequence to FASTA format. Args: seq_file (Path | str): Path to FASTA file """ return def predictions(self, output_dir: Path) -> dict[int, dict[str, Any]]: """Get the path to the prediction. Args: output_dir (Path): Path to output directory Returns: dict[int, dict[str, Any]]: Dictionary mapping model indices to their prediction paths and metrics """ prediction_paths = list( (output_dir / "results").rglob("relaxed_model_[0-9]_ptm_pred_0.pdb") ) metrics_path = output_dir / "results" / "metrics_per_model.json" if not metrics_path.exists(): return {} with open(metrics_path, "r") as f: metrics = json.load(f) output = { int(pred_path.stem.split("_")[2]): { "prediction_path": pred_path, "metrics": metrics[f"model_{int(pred_path.stem.split('_')[2])}_ptm"], } for pred_path in prediction_paths } return output def has_prediction(self, output_dir: Path) -> bool: """Check if prediction exists in output directory.""" return len(self.predictions(output_dir)) > 0 def check_file_description(self, seq_file: Path | str) -> tuple[bool, str | None]: """Check if the file description is correct. Args: seq_file (Path | str): Path to FASTA file Returns: tuple[bool, str | None]: Tuple containing a boolean indicating if the format is correct and an error message if not """ return True, None class AF2Model(OldModel): model_name = "AlphaFold2" def call(self, seq_file: Path | str, output_dir: Path, *args, **kwargs) -> None: super().call(seq_file, output_dir, AF2Parameters(), *args, **kwargs) class OpenFoldModel(OldModel): model_name = "OpenFold" def call(self, seq_file: Path | str, output_dir: Path, *args, **kwargs) -> None: super().call(seq_file, output_dir, OpenFoldParameters(), *args, **kwargs)