"""Folding Studio Demo App.""" import logging import gradio as gr import pandas as pd from folding_studio_data_models import FoldingModel from gradio_molecule3d import Molecule3D from folding_studio_demo.correlate import ( SCORE_COLUMNS, fake_predict_and_correlate, select_correlation_plot, ) from folding_studio_demo.predict import predict, predict_comparison logger = logging.getLogger(__name__) MOLECULE_REPS = [ { "model": 0, "chain": "", "resname": "", "style": "cartoon", "color": "alphafold", # "residue_range": "", "around": 0, "byres": False, # "visible": False, # "opacity": 0.5 } ] DEFAULT_PROTEIN_SEQ = ">protein description\nMALWMRLLPLLALLALWGPDPAAA" MODEL_CHOICES = [ # ("AlphaFold2", FoldingModel.AF2), # ("OpenFold", FoldingModel.OPENFOLD), # ("SoloSeq", FoldingModel.SOLOSEQ), ("Boltz-1", FoldingModel.BOLTZ), ("Chai-1", FoldingModel.CHAI), ("Protenix", FoldingModel.PROTENIX), ] def sequence_input() -> gr.Textbox: """Sequence input component. Returns: gr.Textbox: Sequence input component """ sequence = gr.Textbox( label="Protein Sequence", value=DEFAULT_PROTEIN_SEQ, lines=2, placeholder="Enter a protein sequence or upload a FASTA file", ) file_input = gr.File( label="Upload a FASTA file", file_types=[".fasta", ".fa"], ) def _process_file(file: gr.File | None) -> gr.Textbox: if file is None: return gr.Textbox() try: with open(file.name, "r") as f: content = f.read().strip() return gr.Textbox(value=content) except Exception as e: logger.error(f"Error reading file: {e}") return gr.Textbox() file_input.change(fn=_process_file, inputs=[file_input], outputs=[sequence]) return sequence def simple_prediction(api_key: str) -> None: """Simple prediction tab. Args: api_key (str): Folding Studio API key """ gr.Markdown( """ ### Predict a Protein Structure It will be run in the background and the results will be displayed in the output section. The output will contain the protein structure and the pLDDT plot. Select a model to run the inference with and enter a protein sequence or upload a FASTA file. """ ) with gr.Row(): dropdown = gr.Dropdown( label="Model", choices=MODEL_CHOICES, scale=0, value=FoldingModel.BOLTZ, ) with gr.Column(): sequence = sequence_input() predict_btn = gr.Button("Predict") with gr.Row(): mol_output = Molecule3D(label="Protein Structure", reps=MOLECULE_REPS) metrics_plot = gr.Plot(label="pLDDT") predict_btn.click( fn=predict, inputs=[sequence, api_key, dropdown], outputs=[mol_output, metrics_plot], ) def model_comparison(api_key: str) -> None: """Model comparison tab. Args: api_key (str): Folding Studio API key """ with gr.Row(): models = gr.Dropdown( label="Model", choices=MODEL_CHOICES, multiselect=True, scale=0, min_width=300, value=[FoldingModel.BOLTZ, FoldingModel.CHAI, FoldingModel.PROTENIX], ) with gr.Column(): sequence = sequence_input() predict_btn = gr.Button("Compare Models") with gr.Row(): mol_outputs = Molecule3D( label="Protein Structure", reps=MOLECULE_REPS, file_count="multiple", ) # metrics_plot = gr.Plot(label="pLDDT") predict_btn.click( fn=predict_comparison, inputs=[sequence, api_key, models], outputs=[mol_outputs], ) def create_correlation_tab(): gr.Markdown("# Correlation with experimental binding affinity data") spr_data_with_scores = pd.read_csv("spr_af_scores_mapped.csv") prettified_columns = { "antibody_name": "Antibody Name", "KD (nM)": "KD (nM)", "antibody_vh_sequence": "Antibody VH Sequence", "antibody_vl_sequence": "Antibody VL Sequence", "antigen_sequence": "Antigen Sequence", } spr_data_with_scores = spr_data_with_scores.rename(columns=prettified_columns) with gr.Row(): columns = [ "Antibody Name", "KD (nM)", "Antibody VH Sequence", "Antibody VL Sequence", "Antigen Sequence", ] # Display dataframe with floating point values rounded to 2 decimal places spr_data = gr.DataFrame( value=spr_data_with_scores[columns].round(2), label="Experimental Antibody-Antigen Binding Affinity Data", ) gr.Markdown("# Prediction and correlation") with gr.Row(): fake_predict_btn = gr.Button("Predict structures of all complexes") with gr.Row(): prediction_dataframe = gr.Dataframe(label="Predicted Structures Data") with gr.Row(): correlation_ranking_plot = gr.Plot(label="Correlation ranking") with gr.Row(): # User can select the columns to display in the correlation plot correlation_column = gr.Dropdown( label="Score data to display", choices=SCORE_COLUMNS, multiselect=False ) correlation_plot = gr.Plot(label="Correlation with binding affinity") fake_predict_btn.click( fn=lambda x: fake_predict_and_correlate( spr_data_with_scores, SCORE_COLUMNS, ["Antibody Name", "KD (nM)"] ), inputs=None, outputs=[prediction_dataframe, correlation_ranking_plot], ) # Call function to update the correlation plot when the user selects the columns correlation_column.change( fn=lambda score: select_correlation_plot(spr_data_with_scores, score), inputs=correlation_column, outputs=correlation_plot, ) def __main__(): with gr.Blocks(title="Folding Studio Demo") as demo: gr.Markdown( """ # Folding Studio: Harness the Power of Protein Folding 🧬 Folding Studio is a platform for protein structure prediction. It uses the latest AI-powered folding models to predict the structure of a protein. Available models are : AlphaFold2, OpenFold, SoloSeq, Boltz-1, Chai and Protenix. ## API Key To use the Folding Studio API, you need to provide an API key. You can get your API key by asking to the Folding Studio team. """ ) api_key = gr.Textbox(label="Folding Studio API Key", type="password") gr.Markdown("## Demo Usage") with gr.Tab("🚀 Simple Prediction"): simple_prediction(api_key) with gr.Tab("📊 Model Comparison"): model_comparison(api_key) with gr.Tab("🔍 Correlations"): create_correlation_tab() demo.launch()