"""Folding Studio Demo App.""" import logging import gradio as gr import pandas as pd from folding_studio_data_models import FoldingModel from gradio_molecule3d import Molecule3D from folding_studio_demo.correlate import ( SCORE_COLUMN_NAMES, SCORE_COLUMNS, compute_correlation_data, fake_predict_and_correlate, get_score_description, make_regression_plot, plot_correlation_ranking, ) from folding_studio_demo.predict import filter_predictions, predict, predict_comparison logger = logging.getLogger(__name__) MOLECULE_REPS = [ { "model": 0, # "chain": "", # "resname": "", "style": "cartoon", "color": "alphafold", # "residue_range": "", "around": 0, "byres": False, # "visible": False, # "opacity": 0.5 } ] MODEL_CHOICES = [ ("AlphaFold2", FoldingModel.AF2), ("OpenFold", FoldingModel.OPENFOLD), # ("SoloSeq", FoldingModel.SOLOSEQ), ("Boltz-1", FoldingModel.BOLTZ), ("Chai-1", FoldingModel.CHAI), ("Protenix", FoldingModel.PROTENIX), ] MONOMER_SEQ_EXAMPLE = ">A|protein\nMALWMRLLPLLALLALWGPDPAAA" MULTIMER_SEQ_EXAMPLE = ">A|protein\nSQIPASEQETLVRPKPLLLKLLKSVGAQKDTYTMKEVLFYLGQYIMTKRLYDAAQQHIVYCSNDLLGDLFGVPSFSVKEHRKIYTMIYRNLVVVNQQESSDSGTSVSEN\n>B|protein\nSQETFSDLWKLLPEN" EXAMPLES = [ ["Monomer", MONOMER_SEQ_EXAMPLE], ["Multimer", MULTIMER_SEQ_EXAMPLE], ] def sequence_input(dropdown: gr.Dropdown | None = None) -> gr.Textbox: """Sequence input component. Returns: gr.Textbox: Sequence input component """ with gr.Column(): with gr.Row(): with gr.Row(): with gr.Column(): sequence = gr.Textbox( label="Protein Sequence", placeholder="Enter a protein sequence or upload a FASTA file", value=MONOMER_SEQ_EXAMPLE, lines=5, ) gr.Markdown( "Select an example below, enter a sequence manually or upload a FASTA file." ) file_input = gr.File( label="Upload a FASTA file", file_types=[".fasta", ".fa"], scale=0, height=150, ) with gr.Row(equal_height=True): with gr.Column(): with gr.Row(): gr.Markdown("**Monomer Example:**") gr.Markdown("**Multimer Example:**") with gr.Row(): gr.Markdown("```\n" + MONOMER_SEQ_EXAMPLE + "\n```") gr.Markdown("```\n" + MULTIMER_SEQ_EXAMPLE + "\n```") with gr.Row(): gr.Button("Load Monomer Example", size="md").click( fn=lambda: MONOMER_SEQ_EXAMPLE, outputs=[sequence], ) gr.Button("Load Multimer Example", size="md").click( fn=lambda: MULTIMER_SEQ_EXAMPLE, outputs=[sequence] ) def _process_file(file: gr.File | None) -> gr.Textbox: if file is None: return gr.Textbox() try: with open(file.name, "r") as f: content = f.read().strip() return gr.Textbox(value=content) except Exception as e: logger.error(f"Error reading file: {e}") return gr.Textbox() file_input.change(fn=_process_file, inputs=[file_input], outputs=[sequence]) return sequence def simple_prediction(api_key: str) -> None: """Simple prediction tab. Args: api_key (str): Folding Studio API key """ gr.Markdown( """ ## Predict a Protein Structure It will be run in the background and the results will be displayed in the output section. The output will contain the protein structure and the pLDDT plot. Select a model to run the inference with and enter a protein sequence or upload a FASTA file. """ ) with gr.Row(): dropdown = gr.Dropdown( label="Model", choices=MODEL_CHOICES, scale=0, value=FoldingModel.BOLTZ, ) with gr.Column(): sequence = sequence_input(dropdown) predict_btn = gr.Button( "Predict", elem_classes="gradient-button", elem_id="predict-btn", variant="primary", ) with gr.Row(): mol_output = Molecule3D(label="Protein Structure", reps=MOLECULE_REPS) metrics_plot = gr.Plot(label="pLDDT") predict_btn.click( fn=lambda x, y, z: predict(x, y, z, format_fasta=True), inputs=[sequence, api_key, dropdown], outputs=[mol_output, metrics_plot], ) def model_comparison(api_key: str) -> None: """Model comparison tab. Args: api_key (str): Folding Studio API key """ gr.Markdown( """ ## Compare Folding Models This tab allows you to compare predictions from multiple protein folding models side by side. Follow these steps to get started: 1. **Select Models**: Choose one or more models from the list on the left 2. **Input Sequence** : Either select an example sequence, enter your protein sequence directly in the text box or upload a FASTA file. 3. **Run Comparison**: Click "Compare Models" to start the prediction """ ) with gr.Row(): models = gr.CheckboxGroup( label="Model", choices=MODEL_CHOICES, scale=0, min_width=150, value=[FoldingModel.BOLTZ, FoldingModel.CHAI, FoldingModel.PROTENIX], ) with gr.Column(): sequence = sequence_input() predict_btn = gr.Button( "Compare Models", elem_classes=["gradient-button"], elem_id="compare-models-btn", variant="primary", ) with gr.Row(): with gr.Column(): gr.Markdown( """ ### Understanding the Outputs: - **3D Structure**: The molecular viewer shows the predicted protein structure - **pLDDT Score**: A confidence score (0-100) for each residue: - Very high (>90): Highly accurate - Confident (70-90): Good accuracy - Low (50-70): Limited accuracy - Very low (<50): Poor accuracy """ ) gr.Markdown( "### Model Predictions\nUse the checkboxes to toggle which model predictions to compare:" ) with gr.Row(): af2_predictions = gr.CheckboxGroup(label="AlphaFold2", visible=False) openfold_predictions = gr.CheckboxGroup(label="OpenFold", visible=False) solo_predictions = gr.CheckboxGroup(label="SoloSeq", visible=False) chai_predictions = gr.CheckboxGroup(label="Chai", visible=False) protenix_predictions = gr.CheckboxGroup(label="Protenix", visible=False) boltz_predictions = gr.CheckboxGroup(label="Boltz", visible=False) with gr.Row(): mol_outputs = Molecule3D( label="Protein Structure", reps=MOLECULE_REPS, height=1000 ) metrics_plot = gr.Plot(label="pLDDT") # Store the initial predictions prediction_outputs = gr.State() predict_btn.click( fn=predict_comparison, inputs=[sequence, api_key, models], outputs=[ prediction_outputs, af2_predictions, openfold_predictions, solo_predictions, chai_predictions, boltz_predictions, protenix_predictions, ], ).then( fn=filter_predictions, inputs=[ prediction_outputs, af2_predictions, openfold_predictions, solo_predictions, chai_predictions, boltz_predictions, protenix_predictions, ], outputs=[mol_outputs, metrics_plot], ) # Handle checkbox changes for checkbox in [ af2_predictions, openfold_predictions, solo_predictions, chai_predictions, boltz_predictions, protenix_predictions, ]: checkbox.change( fn=filter_predictions, inputs=[ prediction_outputs, af2_predictions, openfold_predictions, solo_predictions, chai_predictions, boltz_predictions, protenix_predictions, ], outputs=[mol_outputs, metrics_plot], ) def create_antibody_discovery_tab(): gr.Markdown( "# Accelerating Antibody Discovery: In-Silico and Experimental Insights" ) gr.Markdown(""" Let's dive into how we're using AI to accelerate antibody drug discovery by looking at how protein folding models stack up against real lab data. We've got this dataset that shows how well different antibodies stick to a specific target (we measure this as KD in nM). For each antibody-target pair, we've recorded: - The antibody's light and heavy chain sequences (think of them as the antibody's building blocks) - The target (antigen) sequence - How strongly they bind together in the lab (the KD value, lower means stronger binding) Why is it interesting? We take these sequences and feed them into protein folding models that predict their 3D structures. The models tell us how confident they are about their predictions. By comparing these confidence scores with our lab results, we can figure out which model scores are actually good at predicting real binding strength! Why is this useful for drug discovery? Once we know which computational scores to trust, we can use them to quickly check thousands of potential antibodies without having to test each one in the lab. We can then focus our lab work on testing just the most promising candidates. This means we can find effective antibody drugs much faster than before! """) spr_data_with_scores = pd.read_csv("spr_af_scores_mapped.csv") spr_data_with_scores = spr_data_with_scores.rename(columns=SCORE_COLUMN_NAMES) prettified_columns = { "antibody_name": "Antibody Name", "KD (nM)": "KD (nM)", "antibody_vh_sequence": "Antibody VH Sequence", "antibody_vl_sequence": "Antibody VL Sequence", "antigen_sequence": "Antigen Sequence", } spr_data_with_scores = spr_data_with_scores.rename(columns=prettified_columns) columns = [ "Antibody Name", "KD (nM)", "Antibody VH Sequence", "Antibody VL Sequence", "Antigen Sequence", ] # Display dataframe with floating point values rounded to 2 decimal places gr.DataFrame( value=spr_data_with_scores[columns].round(2), label="Experimental Antibody-Antigen Binding Affinity Data", ) gr.Markdown("# Prediction and correlation") with gr.Row(): with gr.Column(min_width=150): gr.Markdown( "Now, let's see how well the protein folding models can predict the binding affinity of these antibodies to the target antigen." ) with gr.Column(min_width=150): fake_predict_btn = gr.Button( "Predict structures of all complexes", elem_classes="gradient-button", variant="primary", ) prediction_dataframe = gr.Dataframe( label="Predicted Structures Data", visible=False ) prediction_dataframe.change( fn=lambda x: gr.Dataframe(x, visible=True), inputs=[prediction_dataframe], outputs=[prediction_dataframe], ) with gr.Row(visible=False) as explanation_row: gr.Markdown( """ We now have the predicted structures along with the models confidence scores of all complexes. Let's see if we can find a correlation between the confidence scores and the binding affinity. Spearman and Pearson are statistical methods commonly used to measure the correlation between two variables. Higher values indicate a stronger correlation. Here **Boltz Complex ipLDDT** is the best predictor of binding affinity. """, ) with gr.Row(visible=False) as correlation_row: with gr.Column(scale=0): with gr.Row(): correlation_type = gr.Radio( choices=["Spearman", "Pearson"], value="Spearman", label="Correlation Type", interactive=True, min_width=150, ) with gr.Row(): log_scale = gr.Checkbox( label="Use log scale for KD", value=True, min_width=150, ) with gr.Column(): correlation_ranking_plot = gr.Plot(label="Correlation ranking") with gr.Row(visible=False) as regression_row: with gr.Column(scale=0): # User can select the columns to display in the correlation plot correlation_column = gr.Dropdown( label="Score data to display", choices=SCORE_COLUMNS, multiselect=False, value="Boltz Complex ipLDDT", ) score_description = gr.Markdown( get_score_description(correlation_column.value) ) correlation_column.change( fn=lambda x: get_score_description(x), inputs=correlation_column, outputs=score_description, ) with gr.Column(): regression_plot = gr.Plot(label="Correlation with binding affinity") fake_predict_btn.click( fn=lambda x: ( *fake_predict_and_correlate( spr_data_with_scores, SCORE_COLUMNS, ["Antibody Name", "KD (nM)"] ), gr.Row(visible=True), gr.Row(visible=True), gr.Row(visible=True) ), inputs=[correlation_type], outputs=[ prediction_dataframe, correlation_ranking_plot, regression_plot, explanation_row, correlation_row, regression_row, ], ) def update_plots_with_log(correlation_type, score, use_log): logger.info(f"Updating correlation plot for {correlation_type}") corr_data = compute_correlation_data(spr_data_with_scores, SCORE_COLUMNS) logger.info(f"Correlation data: {corr_data}") corr_ranking_plot = plot_correlation_ranking( corr_data, correlation_type, kd_col="KD (nM)" if not use_log else "log_kd" ) regression_plot = make_regression_plot(spr_data_with_scores, score, use_log) return regression_plot, corr_ranking_plot correlation_column.change( fn=update_plots_with_log, inputs=[correlation_type, correlation_column, log_scale], outputs=[regression_plot, correlation_ranking_plot], ) correlation_type.change( fn=update_plots_with_log, inputs=[correlation_type, correlation_column, log_scale], outputs=[regression_plot, correlation_ranking_plot], ) log_scale.change( fn=update_plots_with_log, inputs=[correlation_type, correlation_column, log_scale], outputs=[regression_plot, correlation_ranking_plot], ) def __main__(): theme = gr.themes.Ocean( primary_hue="blue", secondary_hue="purple", ) with gr.Blocks(theme=theme, title="Folding Studio Demo") as demo: gr.Markdown( """ # Folding Studio: Harness the Power of Protein Folding ๐Ÿงฌ Folding Studio is a platform for protein structure prediction. It uses the latest AI-powered folding models to predict the structure of a protein. Available models are : AlphaFold2, OpenFold, Boltz-1, Chai and Protenix. """ ) with gr.Accordion("API Key", open=False): gr.Markdown( """ To use the Folding Studio API, you need to provide an API key. You can get your API key by asking to the Folding Studio team. """ ) api_key = gr.Textbox( placeholder="Enter your Folding Studio API key", type="password", show_label=False, ) gr.Markdown("## Demo Usage") with gr.Tab("๐Ÿš€ Basic Folding"): simple_prediction(api_key) with gr.Tab("๐Ÿ“Š Model Comparison"): model_comparison(api_key) with gr.Tab("๐Ÿงช Antibody Discovery Pipeline"): create_antibody_discovery_tab() demo.launch()