Spaces:
Running
on
Zero
Running
on
Zero
File size: 10,324 Bytes
8310116 5addfff 8310116 141fb6e 8310116 5addfff 8310116 481127d 8310116 23b28ef 8310116 02c341c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 |
import sys
sys.path.append('../')
import spaces
import torch
import random
import numpy as np
from PIL import Image
import gradio as gr
from huggingface_hub import hf_hub_download
from transformers import AutoModelForImageSegmentation
from torchvision import transforms
from pipeline import InstantCharacterFluxPipeline
# global variable
MAX_SEED = np.iinfo(np.int32).max
device = "cuda" if torch.cuda.is_available() else "cpu"
dtype = torch.float16 if str(device).__contains__("cuda") else torch.float32
# pre-trained weights
ip_adapter_path = hf_hub_download(repo_id="tencent/InstantCharacter", filename="instantcharacter_ip-adapter.bin")
base_model = 'black-forest-labs/FLUX.1-dev'
image_encoder_path = 'google/siglip-so400m-patch14-384'
image_encoder_2_path = 'facebook/dinov2-giant'
birefnet_path = 'ZhengPeng7/BiRefNet'
makoto_style_lora_path = hf_hub_download(repo_id="InstantX/FLUX.1-dev-LoRA-Makoto-Shinkai", filename="Makoto_Shinkai_style.safetensors")
ghibli_style_lora_path = hf_hub_download(repo_id="InstantX/FLUX.1-dev-LoRA-Ghibli", filename="ghibli_style.safetensors")
# init InstantCharacter pipeline
pipe = InstantCharacterFluxPipeline.from_pretrained(base_model, torch_dtype=torch.bfloat16)
pipe.to(device)
# load InstantCharacter
pipe.init_adapter(
image_encoder_path=image_encoder_path,
image_encoder_2_path=image_encoder_2_path,
subject_ipadapter_cfg=dict(subject_ip_adapter_path=ip_adapter_path, nb_token=1024),
)
# load matting model
birefnet = AutoModelForImageSegmentation.from_pretrained(birefnet_path, trust_remote_code=True)
birefnet.to('cuda')
birefnet.eval()
birefnet_transform_image = transforms.Compose([
transforms.Resize((1024, 1024)),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
])
def remove_bkg(subject_image):
def infer_matting(img_pil):
input_images = birefnet_transform_image(img_pil).unsqueeze(0).to('cuda')
with torch.no_grad():
preds = birefnet(input_images)[-1].sigmoid().cpu()
pred = preds[0].squeeze()
pred_pil = transforms.ToPILImage()(pred)
mask = pred_pil.resize(img_pil.size)
mask = np.array(mask)
mask = mask[..., None]
return mask
def get_bbox_from_mask(mask, th=128):
height, width = mask.shape[:2]
x1, y1, x2, y2 = 0, 0, width - 1, height - 1
sample = np.max(mask, axis=0)
for idx in range(width):
if sample[idx] >= th:
x1 = idx
break
sample = np.max(mask[:, ::-1], axis=0)
for idx in range(width):
if sample[idx] >= th:
x2 = width - 1 - idx
break
sample = np.max(mask, axis=1)
for idx in range(height):
if sample[idx] >= th:
y1 = idx
break
sample = np.max(mask[::-1], axis=1)
for idx in range(height):
if sample[idx] >= th:
y2 = height - 1 - idx
break
x1 = np.clip(x1, 0, width-1).round().astype(np.int32)
y1 = np.clip(y1, 0, height-1).round().astype(np.int32)
x2 = np.clip(x2, 0, width-1).round().astype(np.int32)
y2 = np.clip(y2, 0, height-1).round().astype(np.int32)
return [x1, y1, x2, y2]
def pad_to_square(image, pad_value = 255, random = False):
'''
image: np.array [h, w, 3]
'''
H,W = image.shape[0], image.shape[1]
if H == W:
return image
padd = abs(H - W)
if random:
padd_1 = int(np.random.randint(0,padd))
else:
padd_1 = int(padd / 2)
padd_2 = padd - padd_1
if H > W:
pad_param = ((0,0),(padd_1,padd_2),(0,0))
else:
pad_param = ((padd_1,padd_2),(0,0),(0,0))
image = np.pad(image, pad_param, 'constant', constant_values=pad_value)
return image
salient_object_mask = infer_matting(subject_image)[..., 0]
x1, y1, x2, y2 = get_bbox_from_mask(salient_object_mask)
subject_image = np.array(subject_image)
salient_object_mask[salient_object_mask > 128] = 255
salient_object_mask[salient_object_mask < 128] = 0
sample_mask = np.concatenate([salient_object_mask[..., None]]*3, axis=2)
obj_image = sample_mask / 255 * subject_image + (1 - sample_mask / 255) * 255
crop_obj_image = obj_image[y1:y2, x1:x2]
crop_pad_obj_image = pad_to_square(crop_obj_image, 255)
subject_image = Image.fromarray(crop_pad_obj_image.astype(np.uint8))
return subject_image
def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
if randomize_seed:
seed = random.randint(0, MAX_SEED)
return seed
def get_example():
case = [
[
"./assets/girl.jpg",
"A girl is playing a guitar in street",
0.9,
'Makoto Shinkai style',
],
[
"./assets/boy.jpg",
"A boy is riding a bike in snow",
0.9,
'Makoto Shinkai style',
],
]
return case
def run_for_examples(source_image, prompt, scale, style_mode):
return create_image(
input_image=source_image,
prompt=prompt,
scale=scale,
guidance_scale=3.5,
num_inference_steps=28,
seed=123456,
style_mode=style_mode,
)
@spaces.GPU
def create_image(input_image,
prompt,
scale,
guidance_scale,
num_inference_steps,
seed,
style_mode=None):
input_image = remove_bkg(input_image)
if style_mode is None:
images = pipe(
prompt=prompt,
num_inference_steps=num_inference_steps,
guidance_scale=guidance_scale,
width=1024,
height=1024,
subject_image=input_image,
subject_scale=scale,
generator=torch.manual_seed(seed),
).images
else:
if style_mode == 'Makoto Shinkai style':
lora_file_path = makoto_style_lora_path
trigger = 'Makoto Shinkai style'
elif style_mode == 'Ghibli style':
lora_file_path = ghibli_style_lora_path
trigger = 'ghibli style'
images = pipe.with_style_lora(
lora_file_path=lora_file_path,
trigger=trigger,
prompt=prompt,
num_inference_steps=num_inference_steps,
guidance_scale=guidance_scale,
width=1024,
height=1024,
subject_image=input_image,
subject_scale=scale,
generator=torch.manual_seed(seed),
).images
return images
# Description
title = r"""
<h1 align="center">InstantCharacter : Personalize Any Characters with a Scalable Diffusion Transformer Framework</h1>
"""
description = r"""
<b>Official π€ Gradio demo</b> for <a href='https://instantcharacter.github.io/' target='_blank'><b>InstantCharacter : Personalize Any Characters with a Scalable Diffusion Transformer Framework</b></a>.<br>
How to use:<br>
1. Upload a character image, removing background would be preferred.
2. Enter a text prompt to describe what you hope the chracter does.
3. Click the <b>Submit</b> button to begin customization.
4. Share your custimized photo with your friends and enjoy! π
"""
article = r"""
---
π **Citation**
<br>
If our work is helpful for your research or applications, please cite us via:
```bibtex
@article{tao2025instantcharacter,
title={InstantCharacter: Personalize Any Characters with a Scalable Diffusion Transformer Framework},
author={Tao, Jiale and Zhang, Yanbing and Wang, Qixun and Cheng, Yiji and Wang, Haofan and Bai, Xu and Zhou, Zhengguang and Li, Ruihuang and Wang, Linqing and Wang, Chunyu and others},
journal={arXiv preprint arXiv:2504.12395},
year={2025}
}
```
π§ **Contact**
<br>
If you have any questions, please feel free to open an issue.
"""
block = gr.Blocks(css="footer {visibility: hidden}").queue(max_size=10, api_open=False)
with block:
# description
gr.Markdown(title)
gr.Markdown(description)
with gr.Tabs():
with gr.Row():
with gr.Column():
with gr.Row():
with gr.Column():
image_pil = gr.Image(label="Source Image", type='pil')
prompt = gr.Textbox(label="Prompt", value="a character is riding a bike in snow")
scale = gr.Slider(minimum=0, maximum=1.5, step=0.01,value=1.0, label="Scale")
style_mode = gr.Dropdown(label='Style', choices=[None, 'Makoto Shinkai style', 'Ghibli style'], value='Makoto Shinkai style')
with gr.Accordion(open=False, label="Advanced Options"):
guidance_scale = gr.Slider(minimum=1,maximum=7.0, step=0.01,value=3.5, label="guidance scale")
num_inference_steps = gr.Slider(minimum=5,maximum=50.0, step=1.0,value=28, label="num inference steps")
seed = gr.Slider(minimum=-1000000, maximum=1000000, value=123456, step=1, label="Seed Value")
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
generate_button = gr.Button("Generate Image")
with gr.Column():
generated_image = gr.Gallery(label="Generated Image")
generate_button.click(
fn=randomize_seed_fn,
inputs=[seed, randomize_seed],
outputs=seed,
queue=False,
api_name=False,
).then(
fn=create_image,
inputs=[image_pil,
prompt,
scale,
guidance_scale,
num_inference_steps,
seed,
style_mode,
],
outputs=[generated_image])
gr.Examples(
examples=get_example(),
inputs=[image_pil, prompt, scale, style_mode],
fn=run_for_examples,
outputs=[generated_image],
cache_examples=True,
)
gr.Markdown(article)
block.launch() |