File size: 6,763 Bytes
d4c1bb7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
from typing import Optional

import torch.nn as nn
import torch
import torch.nn.functional as F
from diffusers.models.embeddings import apply_rotary_emb
from einops import rearrange

from .norm_layer import RMSNorm


class FluxIPAttnProcessor(nn.Module):
    """Attention processor used typically in processing the SD3-like self-attention projections."""

    def __init__(
        self,
        hidden_size=None,
        ip_hidden_states_dim=None,
    ):
        super().__init__()
        self.norm_ip_q = RMSNorm(128, eps=1e-6)
        self.to_k_ip = nn.Linear(ip_hidden_states_dim, hidden_size)
        self.norm_ip_k = RMSNorm(128, eps=1e-6)
        self.to_v_ip = nn.Linear(ip_hidden_states_dim, hidden_size)


    def __call__(
        self,
        attn,
        hidden_states: torch.FloatTensor,
        encoder_hidden_states: torch.FloatTensor = None,
        attention_mask: Optional[torch.FloatTensor] = None,
        image_rotary_emb: Optional[torch.Tensor] = None,
        emb_dict={},
        subject_emb_dict={},
        *args,
        **kwargs,
    ) -> torch.FloatTensor:
        batch_size, _, _ = hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape

        # `sample` projections.
        query = attn.to_q(hidden_states)
        key = attn.to_k(hidden_states)
        value = attn.to_v(hidden_states)

        # IPadapter
        ip_hidden_states = self._get_ip_hidden_states(
            attn, 
            query if encoder_hidden_states is not None else query[:, emb_dict['length_encoder_hidden_states']:],
            subject_emb_dict.get('ip_hidden_states', None)
        )

        inner_dim = key.shape[-1]
        head_dim = inner_dim // attn.heads

        query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
        key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
        value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)

        if attn.norm_q is not None:
            query = attn.norm_q(query)
        if attn.norm_k is not None:
            key = attn.norm_k(key)

        # the attention in FluxSingleTransformerBlock does not use `encoder_hidden_states`
        if encoder_hidden_states is not None:
            # `context` projections.
            encoder_hidden_states_query_proj = attn.add_q_proj(encoder_hidden_states)
            encoder_hidden_states_key_proj = attn.add_k_proj(encoder_hidden_states)
            encoder_hidden_states_value_proj = attn.add_v_proj(encoder_hidden_states)

            encoder_hidden_states_query_proj = encoder_hidden_states_query_proj.view(
                batch_size, -1, attn.heads, head_dim
            ).transpose(1, 2)
            encoder_hidden_states_key_proj = encoder_hidden_states_key_proj.view(
                batch_size, -1, attn.heads, head_dim
            ).transpose(1, 2)
            encoder_hidden_states_value_proj = encoder_hidden_states_value_proj.view(
                batch_size, -1, attn.heads, head_dim
            ).transpose(1, 2)

            if attn.norm_added_q is not None:
                encoder_hidden_states_query_proj = attn.norm_added_q(encoder_hidden_states_query_proj)
            if attn.norm_added_k is not None:
                encoder_hidden_states_key_proj = attn.norm_added_k(encoder_hidden_states_key_proj)

            # attention
            query = torch.cat([encoder_hidden_states_query_proj, query], dim=2)
            key = torch.cat([encoder_hidden_states_key_proj, key], dim=2)
            value = torch.cat([encoder_hidden_states_value_proj, value], dim=2)

        if image_rotary_emb is not None:
            query = apply_rotary_emb(query, image_rotary_emb)
            key = apply_rotary_emb(key, image_rotary_emb)

        hidden_states = F.scaled_dot_product_attention(
            query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False
        )
        hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim)
        hidden_states = hidden_states.to(query.dtype)


        if encoder_hidden_states is not None:
            encoder_hidden_states, hidden_states = (
                hidden_states[:, : encoder_hidden_states.shape[1]],
                hidden_states[:, encoder_hidden_states.shape[1] :],
            )
                
            if ip_hidden_states is not None:
                hidden_states = hidden_states + ip_hidden_states * subject_emb_dict.get('scale', 1.0)

            # linear proj
            hidden_states = attn.to_out[0](hidden_states)
            # dropout
            hidden_states = attn.to_out[1](hidden_states)

            encoder_hidden_states = attn.to_add_out(encoder_hidden_states)

            return hidden_states, encoder_hidden_states
        else:

            if ip_hidden_states is not None:
                hidden_states[:, emb_dict['length_encoder_hidden_states']:] = \
                    hidden_states[:, emb_dict['length_encoder_hidden_states']:] + \
                    ip_hidden_states * subject_emb_dict.get('scale', 1.0)

            return hidden_states


    def _scaled_dot_product_attention(self, query, key, value, attention_mask=None, heads=None):
        query = rearrange(query, '(b h) l c -> b h l c', h=heads)
        key = rearrange(key, '(b h) l c -> b h l c', h=heads)
        value = rearrange(value, '(b h) l c -> b h l c', h=heads)
        hidden_states = F.scaled_dot_product_attention(query, key, value, dropout_p=0.0, is_causal=False, attn_mask=None)
        hidden_states = rearrange(hidden_states, 'b h l c -> (b h) l c', h=heads)
        hidden_states = hidden_states.to(query)
        return hidden_states


    def _get_ip_hidden_states(
            self, 
            attn, 
            img_query, 
            ip_hidden_states, 
        ):
        if ip_hidden_states is None:
            return None
        
        if not hasattr(self, 'to_k_ip') or not hasattr(self, 'to_v_ip'):
            return None

        ip_query = self.norm_ip_q(rearrange(img_query, 'b l (h d) -> b h l d', h=attn.heads))
        ip_query = rearrange(ip_query, 'b h l d -> (b h) l d')
        ip_key = self.to_k_ip(ip_hidden_states)
        ip_key = self.norm_ip_k(rearrange(ip_key, 'b l (h d) -> b h l d', h=attn.heads))
        ip_key = rearrange(ip_key, 'b h l d -> (b h) l d')
        ip_value = self.to_v_ip(ip_hidden_states)
        ip_value = attn.head_to_batch_dim(ip_value)
        ip_hidden_states = self._scaled_dot_product_attention(
            ip_query.to(ip_value.dtype), ip_key.to(ip_value.dtype), ip_value, None, attn.heads)
        ip_hidden_states = ip_hidden_states.to(img_query.dtype)
        ip_hidden_states = attn.batch_to_head_dim(ip_hidden_states)
        return ip_hidden_states