File size: 12,391 Bytes
d4c1bb7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
import torch.nn as nn
import torch
import math

from diffusers.models.transformers.transformer_2d import BasicTransformerBlock
from diffusers.models.embeddings import Timesteps, TimestepEmbedding
from timm.models.vision_transformer import Mlp

from .norm_layer import RMSNorm


# FFN
def FeedForward(dim, mult=4):
    inner_dim = int(dim * mult)
    return nn.Sequential(
        nn.LayerNorm(dim),
        nn.Linear(dim, inner_dim, bias=False),
        nn.GELU(),
        nn.Linear(inner_dim, dim, bias=False),
    )

    
def reshape_tensor(x, heads):
    bs, length, width = x.shape
    #(bs, length, width) --> (bs, length, n_heads, dim_per_head)
    x = x.view(bs, length, heads, -1)
    # (bs, length, n_heads, dim_per_head) --> (bs, n_heads, length, dim_per_head)
    x = x.transpose(1, 2)
    # (bs, n_heads, length, dim_per_head) --> (bs*n_heads, length, dim_per_head)
    x = x.reshape(bs, heads, length, -1)
    return x


class PerceiverAttention(nn.Module):
    def __init__(self, *, dim, dim_head=64, heads=8):
        super().__init__()
        self.scale = dim_head**-0.5
        self.dim_head = dim_head
        self.heads = heads
        inner_dim = dim_head * heads

        self.norm1 = nn.LayerNorm(dim)
        self.norm2 = nn.LayerNorm(dim)

        self.to_q = nn.Linear(dim, inner_dim, bias=False)
        self.to_kv = nn.Linear(dim, inner_dim * 2, bias=False)
        self.to_out = nn.Linear(inner_dim, dim, bias=False)


    def forward(self, x, latents, shift=None, scale=None):
        """
        Args:
            x (torch.Tensor): image features
                shape (b, n1, D)
            latent (torch.Tensor): latent features
                shape (b, n2, D)
        """
        x = self.norm1(x)
        latents = self.norm2(latents)

        if shift is not None and scale is not None:
            latents = latents * (1 + scale.unsqueeze(1)) + shift.unsqueeze(1)
        
        b, l, _ = latents.shape

        q = self.to_q(latents)
        kv_input = torch.cat((x, latents), dim=-2)
        k, v = self.to_kv(kv_input).chunk(2, dim=-1)
        
        q = reshape_tensor(q, self.heads)
        k = reshape_tensor(k, self.heads)
        v = reshape_tensor(v, self.heads)

        # attention
        scale = 1 / math.sqrt(math.sqrt(self.dim_head))
        weight = (q * scale) @ (k * scale).transpose(-2, -1) # More stable with f16 than dividing afterwards
        weight = torch.softmax(weight.float(), dim=-1).type(weight.dtype)
        out = weight @ v
        
        out = out.permute(0, 2, 1, 3).reshape(b, l, -1)

        return self.to_out(out)


class ReshapeExpandToken(nn.Module):
    def __init__(self, expand_token, token_dim):
        super().__init__()
        self.expand_token = expand_token
        self.token_dim = token_dim

    def forward(self, x):
        x = x.reshape(-1, self.expand_token, self.token_dim)
        return x


class TimeResampler(nn.Module):
    def __init__(
        self,
        dim=1024,
        depth=8,
        dim_head=64,
        heads=16,
        num_queries=8,
        embedding_dim=768,
        output_dim=1024,
        ff_mult=4,
        timestep_in_dim=320,
        timestep_flip_sin_to_cos=True,
        timestep_freq_shift=0,
        expand_token=None,
        extra_dim=None,
    ):
        super().__init__()
        
        self.latents = nn.Parameter(torch.randn(1, num_queries, dim) / dim**0.5)

        self.expand_token = expand_token is not None
        if expand_token:
            self.expand_proj = torch.nn.Sequential(
                torch.nn.Linear(embedding_dim, embedding_dim * 2),
                torch.nn.GELU(),
                torch.nn.Linear(embedding_dim * 2, embedding_dim * expand_token),
                ReshapeExpandToken(expand_token, embedding_dim),
                RMSNorm(embedding_dim, eps=1e-8),
            )

        self.proj_in = nn.Linear(embedding_dim, dim)
        
        self.extra_feature = extra_dim is not None
        if self.extra_feature:
            self.proj_in_norm = RMSNorm(dim, eps=1e-8)
            self.extra_proj_in = torch.nn.Sequential(
                nn.Linear(extra_dim, dim),
                RMSNorm(dim, eps=1e-8),
            )

        self.proj_out = nn.Linear(dim, output_dim)
        self.norm_out = nn.LayerNorm(output_dim)
        
        self.layers = nn.ModuleList([])
        for _ in range(depth):
            self.layers.append(
                nn.ModuleList(
                    [
                        # msa
                        PerceiverAttention(dim=dim, dim_head=dim_head, heads=heads),
                        # ff
                        FeedForward(dim=dim, mult=ff_mult),
                        # adaLN
                        nn.Sequential(nn.SiLU(), nn.Linear(dim, 4 * dim, bias=True))
                    ]
                )
            )

        # time
        self.time_proj = Timesteps(timestep_in_dim, timestep_flip_sin_to_cos, timestep_freq_shift)
        self.time_embedding = TimestepEmbedding(timestep_in_dim, dim, act_fn="silu")


    def forward(self, x, timestep, need_temb=False, extra_feature=None):
        timestep_emb = self.embedding_time(x, timestep)  # bs, dim

        latents = self.latents.repeat(x.size(0), 1, 1)
        
        if self.expand_token:
            x = self.expand_proj(x)

        x = self.proj_in(x)

        if self.extra_feature:
            extra_feature = self.extra_proj_in(extra_feature)
            x = self.proj_in_norm(x)
            x = torch.cat([x, extra_feature], dim=1)
            
        x = x + timestep_emb[:, None]

        for attn, ff, adaLN_modulation in self.layers:
            shift_msa, scale_msa, shift_mlp, scale_mlp = adaLN_modulation(timestep_emb).chunk(4, dim=1)
            latents = attn(x, latents, shift_msa, scale_msa) + latents

            res = latents
            for idx_ff in range(len(ff)):
                layer_ff = ff[idx_ff]
                latents = layer_ff(latents)
                if idx_ff == 0 and isinstance(layer_ff, nn.LayerNorm):  # adaLN
                    latents = latents * (1 + scale_mlp.unsqueeze(1)) + shift_mlp.unsqueeze(1)
            latents = latents + res

            # latents = ff(latents) + latents
            
        latents = self.proj_out(latents)
        latents = self.norm_out(latents)

        if need_temb:
            return latents, timestep_emb
        else:
            return latents


    def embedding_time(self, sample, timestep):

        # 1. time
        timesteps = timestep
        if not torch.is_tensor(timesteps):
            # TODO: this requires sync between CPU and GPU. So try to pass timesteps as tensors if you can
            # This would be a good case for the `match` statement (Python 3.10+)
            is_mps = sample.device.type == "mps"
            if isinstance(timestep, float):
                dtype = torch.float32 if is_mps else torch.float64
            else:
                dtype = torch.int32 if is_mps else torch.int64
            timesteps = torch.tensor([timesteps], dtype=dtype, device=sample.device)
        elif len(timesteps.shape) == 0:
            timesteps = timesteps[None].to(sample.device)

        # broadcast to batch dimension in a way that's compatible with ONNX/Core ML
        timesteps = timesteps.expand(sample.shape[0])

        t_emb = self.time_proj(timesteps)

        # timesteps does not contain any weights and will always return f32 tensors
        # but time_embedding might actually be running in fp16. so we need to cast here.
        # there might be better ways to encapsulate this.
        t_emb = t_emb.to(dtype=sample.dtype)

        emb = self.time_embedding(t_emb, None)
        return emb


class CrossLayerCrossScaleProjector(nn.Module):
    def __init__(
        self,
        inner_dim=2688,
        num_attention_heads=42,
        attention_head_dim=64,
        cross_attention_dim=2688,
        num_layers=4,

        # resampler
        dim=1280,
        depth=4,
        dim_head=64,
        heads=20,
        num_queries=1024,
        embedding_dim=1152 + 1536,
        output_dim=4096,
        ff_mult=4,
        timestep_in_dim=320,
        timestep_flip_sin_to_cos=True,
        timestep_freq_shift=0,
    ):
        super().__init__()

        self.cross_layer_blocks = nn.ModuleList(
            [
                BasicTransformerBlock(
                    inner_dim,
                    num_attention_heads,
                    attention_head_dim,
                    dropout=0,
                    cross_attention_dim=cross_attention_dim,
                    activation_fn="geglu",
                    num_embeds_ada_norm=None,
                    attention_bias=False,
                    only_cross_attention=False,
                    double_self_attention=False,
                    upcast_attention=False,
                    norm_type='layer_norm',
                    norm_elementwise_affine=True,
                    norm_eps=1e-6,
                    attention_type="default",
                )
                for _ in range(num_layers)
            ]
        )

        self.cross_scale_blocks = nn.ModuleList(
            [
                BasicTransformerBlock(
                    inner_dim,
                    num_attention_heads,
                    attention_head_dim,
                    dropout=0,
                    cross_attention_dim=cross_attention_dim,
                    activation_fn="geglu",
                    num_embeds_ada_norm=None,
                    attention_bias=False,
                    only_cross_attention=False,
                    double_self_attention=False,
                    upcast_attention=False,
                    norm_type='layer_norm',
                    norm_elementwise_affine=True,
                    norm_eps=1e-6,
                    attention_type="default",
                )
                for _ in range(num_layers)
            ]
        )

        self.proj = Mlp(
            in_features=inner_dim, 
            hidden_features=int(inner_dim*2), 
            act_layer=lambda: nn.GELU(approximate="tanh"), 
            drop=0
        )

        self.proj_cross_layer = Mlp(
            in_features=inner_dim, 
            hidden_features=int(inner_dim*2), 
            act_layer=lambda: nn.GELU(approximate="tanh"), 
            drop=0
        )

        self.proj_cross_scale = Mlp(
            in_features=inner_dim, 
            hidden_features=int(inner_dim*2), 
            act_layer=lambda: nn.GELU(approximate="tanh"), 
            drop=0
        )

        self.resampler = TimeResampler(
            dim=dim,
            depth=depth,
            dim_head=dim_head,
            heads=heads,
            num_queries=num_queries,
            embedding_dim=embedding_dim,
            output_dim=output_dim,
            ff_mult=ff_mult,
            timestep_in_dim=timestep_in_dim,
            timestep_flip_sin_to_cos=timestep_flip_sin_to_cos,
            timestep_freq_shift=timestep_freq_shift,
        )

    def forward(self, low_res_shallow, low_res_deep, high_res_deep, timesteps, cross_attention_kwargs=None, need_temb=True):
        '''
            low_res_shallow [bs, 729*l, c]
            low_res_deep    [bs, 729, c]
            high_res_deep   [bs, 729*4, c]
        '''

        cross_layer_hidden_states = low_res_deep
        for block in self.cross_layer_blocks:
            cross_layer_hidden_states = block(
                cross_layer_hidden_states,
                encoder_hidden_states=low_res_shallow,
                cross_attention_kwargs=cross_attention_kwargs,
            )
        cross_layer_hidden_states = self.proj_cross_layer(cross_layer_hidden_states)

        cross_scale_hidden_states = low_res_deep
        for block in self.cross_scale_blocks:
            cross_scale_hidden_states = block(
                cross_scale_hidden_states,
                encoder_hidden_states=high_res_deep,
                cross_attention_kwargs=cross_attention_kwargs,
            )
        cross_scale_hidden_states = self.proj_cross_scale(cross_scale_hidden_states)
        
        hidden_states = self.proj(low_res_deep) + cross_scale_hidden_states
        hidden_states = torch.cat([hidden_states, cross_layer_hidden_states], dim=1)

        hidden_states, timestep_emb = self.resampler(hidden_states, timesteps, need_temb=True)
        return hidden_states, timestep_emb