File size: 26,848 Bytes
d4c1bb7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
30a77c4
d4c1bb7
 
 
 
 
 
 
 
 
 
 
30a77c4
d4c1bb7
 
 
 
 
 
 
 
 
 
 
30a77c4
d4c1bb7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
30a77c4
d4c1bb7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
30a77c4
d4c1bb7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
# Copyright 2025 Tencent InstantX Team. All rights reserved.
#

from PIL import Image
from einops import rearrange
import torch
from diffusers.pipelines.flux.pipeline_flux import *
from transformers import SiglipVisionModel, SiglipImageProcessor, AutoModel, AutoImageProcessor

from models.attn_processor import FluxIPAttnProcessor
from models.resampler import CrossLayerCrossScaleProjector
from models.utils import flux_load_lora


# TODO
EXAMPLE_DOC_STRING = """
    Examples:
        ```py
        >>> import torch
        >>> from diffusers import FluxPipeline

        >>> pipe = FluxPipeline.from_pretrained("black-forest-labs/FLUX.1-schnell", torch_dtype=torch.bfloat16)
        >>> pipe.to("cuda")
        >>> prompt = "A cat holding a sign that says hello world"
        >>> # Depending on the variant being used, the pipeline call will slightly vary.
        >>> # Refer to the pipeline documentation for more details.
        >>> image = pipe(prompt, num_inference_steps=4, guidance_scale=0.0).images[0]
        >>> image.save("flux.png")
        ```
"""


class InstantCharacterFluxPipeline(FluxPipeline):


    @torch.no_grad()
    def encode_siglip_image_emb(self, siglip_image, device, dtype):
        siglip_image = siglip_image.to(device, dtype=dtype)
        res = self.siglip_image_encoder(siglip_image, output_hidden_states=True)

        siglip_image_embeds = res.last_hidden_state

        siglip_image_shallow_embeds = torch.cat([res.hidden_states[i] for i in [7, 13, 26]], dim=1)
        
        return siglip_image_embeds, siglip_image_shallow_embeds


    @torch.no_grad()
    def encode_dinov2_image_emb(self, dinov2_image, device, dtype):
        dinov2_image = dinov2_image.to(device, dtype=dtype)
        res = self.dino_image_encoder_2(dinov2_image, output_hidden_states=True)

        dinov2_image_embeds = res.last_hidden_state[:, 1:]

        dinov2_image_shallow_embeds = torch.cat([res.hidden_states[i][:, 1:] for i in [9, 19, 29]], dim=1)

        return dinov2_image_embeds, dinov2_image_shallow_embeds


    @torch.no_grad()
    def encode_image_emb(self, siglip_image, device, dtype):
        object_image_pil = siglip_image
        object_image_pil_low_res = [object_image_pil.resize((384, 384))]
        object_image_pil_high_res = object_image_pil.resize((768, 768))
        object_image_pil_high_res = [
            object_image_pil_high_res.crop((0, 0, 384, 384)),
            object_image_pil_high_res.crop((384, 0, 768, 384)),
            object_image_pil_high_res.crop((0, 384, 384, 768)),
            object_image_pil_high_res.crop((384, 384, 768, 768)),
        ]
        nb_split_image = len(object_image_pil_high_res)

        siglip_image_embeds = self.encode_siglip_image_emb(
            self.siglip_image_processor(images=object_image_pil_low_res, return_tensors="pt").pixel_values, 
            device, 
            dtype
        )
        dinov2_image_embeds = self.encode_dinov2_image_emb(
            self.dino_image_processor_2(images=object_image_pil_low_res, return_tensors="pt").pixel_values, 
            device, 
            dtype
        )

        image_embeds_low_res_deep = torch.cat([siglip_image_embeds[0], dinov2_image_embeds[0]], dim=2)
        image_embeds_low_res_shallow = torch.cat([siglip_image_embeds[1], dinov2_image_embeds[1]], dim=2)

        siglip_image_high_res = self.siglip_image_processor(images=object_image_pil_high_res, return_tensors="pt").pixel_values
        siglip_image_high_res = siglip_image_high_res[None]
        siglip_image_high_res = rearrange(siglip_image_high_res, 'b n c h w -> (b n) c h w')
        siglip_image_high_res_embeds = self.encode_siglip_image_emb(siglip_image_high_res, device, dtype)
        siglip_image_high_res_deep = rearrange(siglip_image_high_res_embeds[0], '(b n) l c -> b (n l) c', n=nb_split_image)
        dinov2_image_high_res = self.dino_image_processor_2(images=object_image_pil_high_res, return_tensors="pt").pixel_values
        dinov2_image_high_res = dinov2_image_high_res[None]
        dinov2_image_high_res = rearrange(dinov2_image_high_res, 'b n c h w -> (b n) c h w')
        dinov2_image_high_res_embeds = self.encode_dinov2_image_emb(dinov2_image_high_res, device, dtype)
        dinov2_image_high_res_deep = rearrange(dinov2_image_high_res_embeds[0], '(b n) l c -> b (n l) c', n=nb_split_image)
        image_embeds_high_res_deep = torch.cat([siglip_image_high_res_deep, dinov2_image_high_res_deep], dim=2)

        image_embeds_dict = dict(
            image_embeds_low_res_shallow=image_embeds_low_res_shallow,
            image_embeds_low_res_deep=image_embeds_low_res_deep,
            image_embeds_high_res_deep=image_embeds_high_res_deep,
        )
        return image_embeds_dict


    @torch.no_grad()
    def init_ccp_and_attn_processor(self, *args, **kwargs):
        subject_ip_adapter_path = kwargs['subject_ip_adapter_path']
        nb_token = kwargs['nb_token']
        state_dict = torch.load(subject_ip_adapter_path, map_location="cpu")
        device, dtype = self.transformer.device, self.transformer.dtype

        print(f"=> init attn processor")
        attn_procs = {}
        for idx_attn, (name, v) in enumerate(self.transformer.attn_processors.items()):
            attn_procs[name] = FluxIPAttnProcessor(
                hidden_size=self.transformer.config.attention_head_dim * self.transformer.config.num_attention_heads,
                ip_hidden_states_dim=self.text_encoder_2.config.d_model,
            ).to(device, dtype=dtype)
        self.transformer.set_attn_processor(attn_procs)
        tmp_ip_layers = torch.nn.ModuleList(self.transformer.attn_processors.values())
        key_name = tmp_ip_layers.load_state_dict(state_dict["ip_adapter"], strict=False)
        print(f"=> load attn processor: {key_name}")

        print(f"=> init project")
        image_proj_model = CrossLayerCrossScaleProjector(
            inner_dim=1152 + 1536,
            num_attention_heads=42,
            attention_head_dim=64,
            cross_attention_dim=1152 + 1536,
            num_layers=4,
            dim=1280,
            depth=4,
            dim_head=64,
            heads=20,
            num_queries=nb_token,
            embedding_dim=1152 + 1536,
            output_dim=4096,
            ff_mult=4,
            timestep_in_dim=320,
            timestep_flip_sin_to_cos=True,
            timestep_freq_shift=0,
        )
        image_proj_model.eval()
        image_proj_model.to(device, dtype=dtype)

        key_name = image_proj_model.load_state_dict(state_dict["image_proj"], strict=False)
        print(f"=> load project: {key_name}")
        self.subject_image_proj_model = image_proj_model


    @torch.no_grad()
    def init_adapter(
        self, 
        image_encoder_path=None, 
        image_encoder_2_path=None, 
        subject_ipadapter_cfg=None, 
    ):
        device, dtype = self.transformer.device, self.transformer.dtype

        # image encoder
        print(f"=> loading image_encoder_1: {image_encoder_path}")
        image_encoder = SiglipVisionModel.from_pretrained(image_encoder_path)
        image_processor = SiglipImageProcessor.from_pretrained(image_encoder_path)
        image_encoder.eval()
        image_encoder.to(device, dtype=dtype)
        self.siglip_image_encoder = image_encoder
        self.siglip_image_processor = image_processor

        # image encoder 2
        print(f"=> loading image_encoder_2: {image_encoder_2_path}")
        image_encoder_2 = AutoModel.from_pretrained(image_encoder_2_path)
        image_processor_2 = AutoImageProcessor.from_pretrained(image_encoder_2_path)
        image_encoder_2.eval()
        image_encoder_2.to(device, dtype=dtype)
        image_processor_2.crop_size = dict(height=384, width=384)
        image_processor_2.size = dict(shortest_edge=384)
        self.dino_image_encoder_2 = image_encoder_2
        self.dino_image_processor_2 = image_processor_2

        # ccp and adapter
        self.init_ccp_and_attn_processor(**subject_ipadapter_cfg)


    @torch.no_grad()
    @replace_example_docstring(EXAMPLE_DOC_STRING)
    def __call__(
        self,
        prompt: Union[str, List[str]] = None,
        prompt_2: Optional[Union[str, List[str]]] = None,
        negative_prompt: Union[str, List[str]] = None,
        negative_prompt_2: Optional[Union[str, List[str]]] = None,
        true_cfg_scale: float = 1.0,
        height: Optional[int] = None,
        width: Optional[int] = None,
        num_inference_steps: int = 28,
        sigmas: Optional[List[float]] = None,
        guidance_scale: float = 3.5,
        num_images_per_prompt: Optional[int] = 1,
        generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
        latents: Optional[torch.FloatTensor] = None,
        prompt_embeds: Optional[torch.FloatTensor] = None,
        pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
        ip_adapter_image: Optional[PipelineImageInput] = None,
        ip_adapter_image_embeds: Optional[List[torch.Tensor]] = None,
        negative_ip_adapter_image: Optional[PipelineImageInput] = None,
        negative_ip_adapter_image_embeds: Optional[List[torch.Tensor]] = None,
        negative_prompt_embeds: Optional[torch.FloatTensor] = None,
        negative_pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
        output_type: Optional[str] = "pil",
        return_dict: bool = True,
        joint_attention_kwargs: Optional[Dict[str, Any]] = None,
        callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None,
        callback_on_step_end_tensor_inputs: List[str] = ["latents"],
        max_sequence_length: int = 512,
        subject_image: Image.Image = None,
        subject_scale: float = 0.8,

    ):
        r"""
        Function invoked when calling the pipeline for generation.

        Args:
            prompt (`str` or `List[str]`, *optional*):
                The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`.
                instead.
            prompt_2 (`str` or `List[str]`, *optional*):
                The prompt or prompts to be sent to `tokenizer_2` and `text_encoder_2`. If not defined, `prompt` is
                will be used instead
            height (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
                The height in pixels of the generated image. This is set to 1024 by default for the best results.
            width (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
                The width in pixels of the generated image. This is set to 1024 by default for the best results.
            num_inference_steps (`int`, *optional*, defaults to 50):
                The number of denoising steps. More denoising steps usually lead to a higher quality image at the
                expense of slower inference.
            sigmas (`List[float]`, *optional*):
                Custom sigmas to use for the denoising process with schedulers which support a `sigmas` argument in
                their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is passed
                will be used.
            guidance_scale (`float`, *optional*, defaults to 7.0):
                Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
                `guidance_scale` is defined as `w` of equation 2. of [Imagen
                Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
                1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
                usually at the expense of lower image quality.
            num_images_per_prompt (`int`, *optional*, defaults to 1):
                The number of images to generate per prompt.
            generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
                One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
                to make generation deterministic.
            latents (`torch.FloatTensor`, *optional*):
                Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
                generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
                tensor will ge generated by sampling using the supplied random `generator`.
            prompt_embeds (`torch.FloatTensor`, *optional*):
                Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
                provided, text embeddings will be generated from `prompt` input argument.
            pooled_prompt_embeds (`torch.FloatTensor`, *optional*):
                Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting.
                If not provided, pooled text embeddings will be generated from `prompt` input argument.
            ip_adapter_image: (`PipelineImageInput`, *optional*): Optional image input to work with IP Adapters.
            ip_adapter_image_embeds (`List[torch.Tensor]`, *optional*):
                Pre-generated image embeddings for IP-Adapter. It should be a list of length same as number of
                IP-adapters. Each element should be a tensor of shape `(batch_size, num_images, emb_dim)`. If not
                provided, embeddings are computed from the `ip_adapter_image` input argument.
            negative_ip_adapter_image:
                (`PipelineImageInput`, *optional*): Optional image input to work with IP Adapters.
            negative_ip_adapter_image_embeds (`List[torch.Tensor]`, *optional*):
                Pre-generated image embeddings for IP-Adapter. It should be a list of length same as number of
                IP-adapters. Each element should be a tensor of shape `(batch_size, num_images, emb_dim)`. If not
                provided, embeddings are computed from the `ip_adapter_image` input argument.
            output_type (`str`, *optional*, defaults to `"pil"`):
                The output format of the generate image. Choose between
                [PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
            return_dict (`bool`, *optional*, defaults to `True`):
                Whether or not to return a [`~pipelines.flux.FluxPipelineOutput`] instead of a plain tuple.
            joint_attention_kwargs (`dict`, *optional*):
                A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
                `self.processor` in
                [diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
            callback_on_step_end (`Callable`, *optional*):
                A function that calls at the end of each denoising steps during the inference. The function is called
                with the following arguments: `callback_on_step_end(self: DiffusionPipeline, step: int, timestep: int,
                callback_kwargs: Dict)`. `callback_kwargs` will include a list of all tensors as specified by
                `callback_on_step_end_tensor_inputs`.
            callback_on_step_end_tensor_inputs (`List`, *optional*):
                The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list
                will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the
                `._callback_tensor_inputs` attribute of your pipeline class.
            max_sequence_length (`int` defaults to 512): Maximum sequence length to use with the `prompt`.

        Examples:

        Returns:
            [`~pipelines.flux.FluxPipelineOutput`] or `tuple`: [`~pipelines.flux.FluxPipelineOutput`] if `return_dict`
            is True, otherwise a `tuple`. When returning a tuple, the first element is a list with the generated
            images.
        """

        height = height or self.default_sample_size * self.vae_scale_factor
        width = width or self.default_sample_size * self.vae_scale_factor

        # 1. Check inputs. Raise error if not correct
        self.check_inputs(
            prompt,
            prompt_2,
            height,
            width,
            negative_prompt=negative_prompt,
            negative_prompt_2=negative_prompt_2,
            prompt_embeds=prompt_embeds,
            negative_prompt_embeds=negative_prompt_embeds,
            pooled_prompt_embeds=pooled_prompt_embeds,
            negative_pooled_prompt_embeds=negative_pooled_prompt_embeds,
            callback_on_step_end_tensor_inputs=callback_on_step_end_tensor_inputs,
            max_sequence_length=max_sequence_length,
        )

        self._guidance_scale = guidance_scale
        self._joint_attention_kwargs = joint_attention_kwargs
        self._interrupt = False

        # 2. Define call parameters
        if prompt is not None and isinstance(prompt, str):
            batch_size = 1
        elif prompt is not None and isinstance(prompt, list):
            batch_size = len(prompt)
        else:
            batch_size = prompt_embeds.shape[0]

        device = self._execution_device
        dtype = self.transformer.dtype

        lora_scale = (
            self.joint_attention_kwargs.get("scale", None) if self.joint_attention_kwargs is not None else None
        )
        do_true_cfg = true_cfg_scale > 1 and negative_prompt is not None
        (
            prompt_embeds,
            pooled_prompt_embeds,
            text_ids,
        ) = self.encode_prompt(
            prompt=prompt,
            prompt_2=prompt_2,
            prompt_embeds=prompt_embeds,
            pooled_prompt_embeds=pooled_prompt_embeds,
            device=device,
            num_images_per_prompt=num_images_per_prompt,
            max_sequence_length=max_sequence_length,
            lora_scale=lora_scale,
        )
        if do_true_cfg:
            (
                negative_prompt_embeds,
                negative_pooled_prompt_embeds,
                _,
            ) = self.encode_prompt(
                prompt=negative_prompt,
                prompt_2=negative_prompt_2,
                prompt_embeds=negative_prompt_embeds,
                pooled_prompt_embeds=negative_pooled_prompt_embeds,
                device=device,
                num_images_per_prompt=num_images_per_prompt,
                max_sequence_length=max_sequence_length,
                lora_scale=lora_scale,
            )

        # 3.1 Prepare subject emb
        if subject_image is not None:
            subject_image = subject_image.resize((max(subject_image.size), max(subject_image.size)))
            subject_image_embeds_dict = self.encode_image_emb(subject_image, device, dtype)

        # 4. Prepare latent variables
        num_channels_latents = self.transformer.config.in_channels // 4
        latents, latent_image_ids = self.prepare_latents(
            batch_size * num_images_per_prompt,
            num_channels_latents,
            height,
            width,
            prompt_embeds.dtype,
            device,
            generator,
            latents,
        )

        # 5. Prepare timesteps
        sigmas = np.linspace(1.0, 1 / num_inference_steps, num_inference_steps) if sigmas is None else sigmas
        image_seq_len = latents.shape[1]
        mu = calculate_shift(
            image_seq_len,
            self.scheduler.config.base_image_seq_len,
            self.scheduler.config.max_image_seq_len,
            self.scheduler.config.base_shift,
            self.scheduler.config.max_shift,
        )
        timesteps, num_inference_steps = retrieve_timesteps(
            self.scheduler,
            num_inference_steps,
            device,
            sigmas=sigmas,
            mu=mu,
        )
        num_warmup_steps = max(len(timesteps) - num_inference_steps * self.scheduler.order, 0)
        self._num_timesteps = len(timesteps)

        # handle guidance
        if self.transformer.config.guidance_embeds:
            guidance = torch.full([1], guidance_scale, device=device, dtype=torch.float32)
            guidance = guidance.expand(latents.shape[0])
        else:
            guidance = None

        if (ip_adapter_image is not None or ip_adapter_image_embeds is not None) and (
            negative_ip_adapter_image is None and negative_ip_adapter_image_embeds is None
        ):
            negative_ip_adapter_image = np.zeros((width, height, 3), dtype=np.uint8)
        elif (ip_adapter_image is None and ip_adapter_image_embeds is None) and (
            negative_ip_adapter_image is not None or negative_ip_adapter_image_embeds is not None
        ):
            ip_adapter_image = np.zeros((width, height, 3), dtype=np.uint8)

        if self.joint_attention_kwargs is None:
            self._joint_attention_kwargs = {}

        image_embeds = None
        negative_image_embeds = None
        if ip_adapter_image is not None or ip_adapter_image_embeds is not None:
            image_embeds = self.prepare_ip_adapter_image_embeds(
                ip_adapter_image,
                ip_adapter_image_embeds,
                device,
                batch_size * num_images_per_prompt,
            )
        if negative_ip_adapter_image is not None or negative_ip_adapter_image_embeds is not None:
            negative_image_embeds = self.prepare_ip_adapter_image_embeds(
                negative_ip_adapter_image,
                negative_ip_adapter_image_embeds,
                device,
                batch_size * num_images_per_prompt,
            )

        # 6. Denoising loop
        with self.progress_bar(total=num_inference_steps) as progress_bar:
            for i, t in enumerate(timesteps):
                if self.interrupt:
                    continue

                if image_embeds is not None:
                    self._joint_attention_kwargs["ip_adapter_image_embeds"] = image_embeds
                # broadcast to batch dimension in a way that's compatible with ONNX/Core ML
                timestep = t.expand(latents.shape[0]).to(latents.dtype)


                # subject adapter
                if subject_image is not None:
                    subject_image_prompt_embeds = self.subject_image_proj_model(
                        low_res_shallow=subject_image_embeds_dict['image_embeds_low_res_shallow'],
                        low_res_deep=subject_image_embeds_dict['image_embeds_low_res_deep'],
                        high_res_deep=subject_image_embeds_dict['image_embeds_high_res_deep'],
                        timesteps=timestep.to(dtype=latents.dtype), 
                        need_temb=True
                    )[0]
                    self._joint_attention_kwargs['emb_dict'] = dict(
                        length_encoder_hidden_states=prompt_embeds.shape[1]
                    )
                    self._joint_attention_kwargs['subject_emb_dict'] = dict(
                        ip_hidden_states=subject_image_prompt_embeds,
                        scale=subject_scale,
                    )
    
                noise_pred = self.transformer(
                    hidden_states=latents,
                    timestep=timestep / 1000,
                    guidance=guidance,
                    pooled_projections=pooled_prompt_embeds,
                    encoder_hidden_states=prompt_embeds,
                    txt_ids=text_ids,
                    img_ids=latent_image_ids,
                    joint_attention_kwargs=self.joint_attention_kwargs,
                    return_dict=False,
                )[0]

                if do_true_cfg:
                    if negative_image_embeds is not None:
                        self._joint_attention_kwargs["ip_adapter_image_embeds"] = negative_image_embeds
                    neg_noise_pred = self.transformer(
                        hidden_states=latents,
                        timestep=timestep / 1000,
                        guidance=guidance,
                        pooled_projections=negative_pooled_prompt_embeds,
                        encoder_hidden_states=negative_prompt_embeds,
                        txt_ids=text_ids,
                        img_ids=latent_image_ids,
                        joint_attention_kwargs=self.joint_attention_kwargs,
                        return_dict=False,
                    )[0]
                    noise_pred = neg_noise_pred + true_cfg_scale * (noise_pred - neg_noise_pred)

                # compute the previous noisy sample x_t -> x_t-1
                latents_dtype = latents.dtype
                latents = self.scheduler.step(noise_pred, t, latents, return_dict=False)[0]

                if latents.dtype != latents_dtype:
                    if torch.backends.mps.is_available():
                        # some platforms (eg. apple mps) misbehave due to a pytorch bug: https://github.com/pytorch/pytorch/pull/99272
                        latents = latents.to(latents_dtype)

                if callback_on_step_end is not None:
                    callback_kwargs = {}
                    for k in callback_on_step_end_tensor_inputs:
                        callback_kwargs[k] = locals()[k]
                    callback_outputs = callback_on_step_end(self, i, t, callback_kwargs)

                    latents = callback_outputs.pop("latents", latents)
                    prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds)

                # call the callback, if provided
                if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
                    progress_bar.update()

                if XLA_AVAILABLE:
                    xm.mark_step()

        if output_type == "latent":
            image = latents

        else:
            latents = self._unpack_latents(latents, height, width, self.vae_scale_factor)
            latents = (latents / self.vae.config.scaling_factor) + self.vae.config.shift_factor
            image = self.vae.decode(latents, return_dict=False)[0]
            image = self.image_processor.postprocess(image, output_type=output_type)

        # Offload all models
        self.maybe_free_model_hooks()

        if not return_dict:
            return (image,)

        return FluxPipelineOutput(images=image)


    def with_style_lora(self, lora_file_path, lora_weight=1.0, trigger='', *args, **kwargs):
        flux_load_lora(self, lora_file_path, lora_weight)
        kwargs['prompt'] = f"{trigger}, {kwargs['prompt']}"
        res = self.__call__(*args, **kwargs)
        flux_load_lora(self, lora_file_path, -lora_weight)
        return res