Spaces:
Running
on
Zero
Running
on
Zero
File size: 26,848 Bytes
d4c1bb7 30a77c4 d4c1bb7 30a77c4 d4c1bb7 30a77c4 d4c1bb7 30a77c4 d4c1bb7 30a77c4 d4c1bb7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 |
# Copyright 2025 Tencent InstantX Team. All rights reserved.
#
from PIL import Image
from einops import rearrange
import torch
from diffusers.pipelines.flux.pipeline_flux import *
from transformers import SiglipVisionModel, SiglipImageProcessor, AutoModel, AutoImageProcessor
from models.attn_processor import FluxIPAttnProcessor
from models.resampler import CrossLayerCrossScaleProjector
from models.utils import flux_load_lora
# TODO
EXAMPLE_DOC_STRING = """
Examples:
```py
>>> import torch
>>> from diffusers import FluxPipeline
>>> pipe = FluxPipeline.from_pretrained("black-forest-labs/FLUX.1-schnell", torch_dtype=torch.bfloat16)
>>> pipe.to("cuda")
>>> prompt = "A cat holding a sign that says hello world"
>>> # Depending on the variant being used, the pipeline call will slightly vary.
>>> # Refer to the pipeline documentation for more details.
>>> image = pipe(prompt, num_inference_steps=4, guidance_scale=0.0).images[0]
>>> image.save("flux.png")
```
"""
class InstantCharacterFluxPipeline(FluxPipeline):
@torch.no_grad()
def encode_siglip_image_emb(self, siglip_image, device, dtype):
siglip_image = siglip_image.to(device, dtype=dtype)
res = self.siglip_image_encoder(siglip_image, output_hidden_states=True)
siglip_image_embeds = res.last_hidden_state
siglip_image_shallow_embeds = torch.cat([res.hidden_states[i] for i in [7, 13, 26]], dim=1)
return siglip_image_embeds, siglip_image_shallow_embeds
@torch.no_grad()
def encode_dinov2_image_emb(self, dinov2_image, device, dtype):
dinov2_image = dinov2_image.to(device, dtype=dtype)
res = self.dino_image_encoder_2(dinov2_image, output_hidden_states=True)
dinov2_image_embeds = res.last_hidden_state[:, 1:]
dinov2_image_shallow_embeds = torch.cat([res.hidden_states[i][:, 1:] for i in [9, 19, 29]], dim=1)
return dinov2_image_embeds, dinov2_image_shallow_embeds
@torch.no_grad()
def encode_image_emb(self, siglip_image, device, dtype):
object_image_pil = siglip_image
object_image_pil_low_res = [object_image_pil.resize((384, 384))]
object_image_pil_high_res = object_image_pil.resize((768, 768))
object_image_pil_high_res = [
object_image_pil_high_res.crop((0, 0, 384, 384)),
object_image_pil_high_res.crop((384, 0, 768, 384)),
object_image_pil_high_res.crop((0, 384, 384, 768)),
object_image_pil_high_res.crop((384, 384, 768, 768)),
]
nb_split_image = len(object_image_pil_high_res)
siglip_image_embeds = self.encode_siglip_image_emb(
self.siglip_image_processor(images=object_image_pil_low_res, return_tensors="pt").pixel_values,
device,
dtype
)
dinov2_image_embeds = self.encode_dinov2_image_emb(
self.dino_image_processor_2(images=object_image_pil_low_res, return_tensors="pt").pixel_values,
device,
dtype
)
image_embeds_low_res_deep = torch.cat([siglip_image_embeds[0], dinov2_image_embeds[0]], dim=2)
image_embeds_low_res_shallow = torch.cat([siglip_image_embeds[1], dinov2_image_embeds[1]], dim=2)
siglip_image_high_res = self.siglip_image_processor(images=object_image_pil_high_res, return_tensors="pt").pixel_values
siglip_image_high_res = siglip_image_high_res[None]
siglip_image_high_res = rearrange(siglip_image_high_res, 'b n c h w -> (b n) c h w')
siglip_image_high_res_embeds = self.encode_siglip_image_emb(siglip_image_high_res, device, dtype)
siglip_image_high_res_deep = rearrange(siglip_image_high_res_embeds[0], '(b n) l c -> b (n l) c', n=nb_split_image)
dinov2_image_high_res = self.dino_image_processor_2(images=object_image_pil_high_res, return_tensors="pt").pixel_values
dinov2_image_high_res = dinov2_image_high_res[None]
dinov2_image_high_res = rearrange(dinov2_image_high_res, 'b n c h w -> (b n) c h w')
dinov2_image_high_res_embeds = self.encode_dinov2_image_emb(dinov2_image_high_res, device, dtype)
dinov2_image_high_res_deep = rearrange(dinov2_image_high_res_embeds[0], '(b n) l c -> b (n l) c', n=nb_split_image)
image_embeds_high_res_deep = torch.cat([siglip_image_high_res_deep, dinov2_image_high_res_deep], dim=2)
image_embeds_dict = dict(
image_embeds_low_res_shallow=image_embeds_low_res_shallow,
image_embeds_low_res_deep=image_embeds_low_res_deep,
image_embeds_high_res_deep=image_embeds_high_res_deep,
)
return image_embeds_dict
@torch.no_grad()
def init_ccp_and_attn_processor(self, *args, **kwargs):
subject_ip_adapter_path = kwargs['subject_ip_adapter_path']
nb_token = kwargs['nb_token']
state_dict = torch.load(subject_ip_adapter_path, map_location="cpu")
device, dtype = self.transformer.device, self.transformer.dtype
print(f"=> init attn processor")
attn_procs = {}
for idx_attn, (name, v) in enumerate(self.transformer.attn_processors.items()):
attn_procs[name] = FluxIPAttnProcessor(
hidden_size=self.transformer.config.attention_head_dim * self.transformer.config.num_attention_heads,
ip_hidden_states_dim=self.text_encoder_2.config.d_model,
).to(device, dtype=dtype)
self.transformer.set_attn_processor(attn_procs)
tmp_ip_layers = torch.nn.ModuleList(self.transformer.attn_processors.values())
key_name = tmp_ip_layers.load_state_dict(state_dict["ip_adapter"], strict=False)
print(f"=> load attn processor: {key_name}")
print(f"=> init project")
image_proj_model = CrossLayerCrossScaleProjector(
inner_dim=1152 + 1536,
num_attention_heads=42,
attention_head_dim=64,
cross_attention_dim=1152 + 1536,
num_layers=4,
dim=1280,
depth=4,
dim_head=64,
heads=20,
num_queries=nb_token,
embedding_dim=1152 + 1536,
output_dim=4096,
ff_mult=4,
timestep_in_dim=320,
timestep_flip_sin_to_cos=True,
timestep_freq_shift=0,
)
image_proj_model.eval()
image_proj_model.to(device, dtype=dtype)
key_name = image_proj_model.load_state_dict(state_dict["image_proj"], strict=False)
print(f"=> load project: {key_name}")
self.subject_image_proj_model = image_proj_model
@torch.no_grad()
def init_adapter(
self,
image_encoder_path=None,
image_encoder_2_path=None,
subject_ipadapter_cfg=None,
):
device, dtype = self.transformer.device, self.transformer.dtype
# image encoder
print(f"=> loading image_encoder_1: {image_encoder_path}")
image_encoder = SiglipVisionModel.from_pretrained(image_encoder_path)
image_processor = SiglipImageProcessor.from_pretrained(image_encoder_path)
image_encoder.eval()
image_encoder.to(device, dtype=dtype)
self.siglip_image_encoder = image_encoder
self.siglip_image_processor = image_processor
# image encoder 2
print(f"=> loading image_encoder_2: {image_encoder_2_path}")
image_encoder_2 = AutoModel.from_pretrained(image_encoder_2_path)
image_processor_2 = AutoImageProcessor.from_pretrained(image_encoder_2_path)
image_encoder_2.eval()
image_encoder_2.to(device, dtype=dtype)
image_processor_2.crop_size = dict(height=384, width=384)
image_processor_2.size = dict(shortest_edge=384)
self.dino_image_encoder_2 = image_encoder_2
self.dino_image_processor_2 = image_processor_2
# ccp and adapter
self.init_ccp_and_attn_processor(**subject_ipadapter_cfg)
@torch.no_grad()
@replace_example_docstring(EXAMPLE_DOC_STRING)
def __call__(
self,
prompt: Union[str, List[str]] = None,
prompt_2: Optional[Union[str, List[str]]] = None,
negative_prompt: Union[str, List[str]] = None,
negative_prompt_2: Optional[Union[str, List[str]]] = None,
true_cfg_scale: float = 1.0,
height: Optional[int] = None,
width: Optional[int] = None,
num_inference_steps: int = 28,
sigmas: Optional[List[float]] = None,
guidance_scale: float = 3.5,
num_images_per_prompt: Optional[int] = 1,
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
latents: Optional[torch.FloatTensor] = None,
prompt_embeds: Optional[torch.FloatTensor] = None,
pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
ip_adapter_image: Optional[PipelineImageInput] = None,
ip_adapter_image_embeds: Optional[List[torch.Tensor]] = None,
negative_ip_adapter_image: Optional[PipelineImageInput] = None,
negative_ip_adapter_image_embeds: Optional[List[torch.Tensor]] = None,
negative_prompt_embeds: Optional[torch.FloatTensor] = None,
negative_pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
output_type: Optional[str] = "pil",
return_dict: bool = True,
joint_attention_kwargs: Optional[Dict[str, Any]] = None,
callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None,
callback_on_step_end_tensor_inputs: List[str] = ["latents"],
max_sequence_length: int = 512,
subject_image: Image.Image = None,
subject_scale: float = 0.8,
):
r"""
Function invoked when calling the pipeline for generation.
Args:
prompt (`str` or `List[str]`, *optional*):
The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`.
instead.
prompt_2 (`str` or `List[str]`, *optional*):
The prompt or prompts to be sent to `tokenizer_2` and `text_encoder_2`. If not defined, `prompt` is
will be used instead
height (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
The height in pixels of the generated image. This is set to 1024 by default for the best results.
width (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
The width in pixels of the generated image. This is set to 1024 by default for the best results.
num_inference_steps (`int`, *optional*, defaults to 50):
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
expense of slower inference.
sigmas (`List[float]`, *optional*):
Custom sigmas to use for the denoising process with schedulers which support a `sigmas` argument in
their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is passed
will be used.
guidance_scale (`float`, *optional*, defaults to 7.0):
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
`guidance_scale` is defined as `w` of equation 2. of [Imagen
Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
usually at the expense of lower image quality.
num_images_per_prompt (`int`, *optional*, defaults to 1):
The number of images to generate per prompt.
generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
to make generation deterministic.
latents (`torch.FloatTensor`, *optional*):
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
tensor will ge generated by sampling using the supplied random `generator`.
prompt_embeds (`torch.FloatTensor`, *optional*):
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
provided, text embeddings will be generated from `prompt` input argument.
pooled_prompt_embeds (`torch.FloatTensor`, *optional*):
Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting.
If not provided, pooled text embeddings will be generated from `prompt` input argument.
ip_adapter_image: (`PipelineImageInput`, *optional*): Optional image input to work with IP Adapters.
ip_adapter_image_embeds (`List[torch.Tensor]`, *optional*):
Pre-generated image embeddings for IP-Adapter. It should be a list of length same as number of
IP-adapters. Each element should be a tensor of shape `(batch_size, num_images, emb_dim)`. If not
provided, embeddings are computed from the `ip_adapter_image` input argument.
negative_ip_adapter_image:
(`PipelineImageInput`, *optional*): Optional image input to work with IP Adapters.
negative_ip_adapter_image_embeds (`List[torch.Tensor]`, *optional*):
Pre-generated image embeddings for IP-Adapter. It should be a list of length same as number of
IP-adapters. Each element should be a tensor of shape `(batch_size, num_images, emb_dim)`. If not
provided, embeddings are computed from the `ip_adapter_image` input argument.
output_type (`str`, *optional*, defaults to `"pil"`):
The output format of the generate image. Choose between
[PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
return_dict (`bool`, *optional*, defaults to `True`):
Whether or not to return a [`~pipelines.flux.FluxPipelineOutput`] instead of a plain tuple.
joint_attention_kwargs (`dict`, *optional*):
A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
`self.processor` in
[diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
callback_on_step_end (`Callable`, *optional*):
A function that calls at the end of each denoising steps during the inference. The function is called
with the following arguments: `callback_on_step_end(self: DiffusionPipeline, step: int, timestep: int,
callback_kwargs: Dict)`. `callback_kwargs` will include a list of all tensors as specified by
`callback_on_step_end_tensor_inputs`.
callback_on_step_end_tensor_inputs (`List`, *optional*):
The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list
will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the
`._callback_tensor_inputs` attribute of your pipeline class.
max_sequence_length (`int` defaults to 512): Maximum sequence length to use with the `prompt`.
Examples:
Returns:
[`~pipelines.flux.FluxPipelineOutput`] or `tuple`: [`~pipelines.flux.FluxPipelineOutput`] if `return_dict`
is True, otherwise a `tuple`. When returning a tuple, the first element is a list with the generated
images.
"""
height = height or self.default_sample_size * self.vae_scale_factor
width = width or self.default_sample_size * self.vae_scale_factor
# 1. Check inputs. Raise error if not correct
self.check_inputs(
prompt,
prompt_2,
height,
width,
negative_prompt=negative_prompt,
negative_prompt_2=negative_prompt_2,
prompt_embeds=prompt_embeds,
negative_prompt_embeds=negative_prompt_embeds,
pooled_prompt_embeds=pooled_prompt_embeds,
negative_pooled_prompt_embeds=negative_pooled_prompt_embeds,
callback_on_step_end_tensor_inputs=callback_on_step_end_tensor_inputs,
max_sequence_length=max_sequence_length,
)
self._guidance_scale = guidance_scale
self._joint_attention_kwargs = joint_attention_kwargs
self._interrupt = False
# 2. Define call parameters
if prompt is not None and isinstance(prompt, str):
batch_size = 1
elif prompt is not None and isinstance(prompt, list):
batch_size = len(prompt)
else:
batch_size = prompt_embeds.shape[0]
device = self._execution_device
dtype = self.transformer.dtype
lora_scale = (
self.joint_attention_kwargs.get("scale", None) if self.joint_attention_kwargs is not None else None
)
do_true_cfg = true_cfg_scale > 1 and negative_prompt is not None
(
prompt_embeds,
pooled_prompt_embeds,
text_ids,
) = self.encode_prompt(
prompt=prompt,
prompt_2=prompt_2,
prompt_embeds=prompt_embeds,
pooled_prompt_embeds=pooled_prompt_embeds,
device=device,
num_images_per_prompt=num_images_per_prompt,
max_sequence_length=max_sequence_length,
lora_scale=lora_scale,
)
if do_true_cfg:
(
negative_prompt_embeds,
negative_pooled_prompt_embeds,
_,
) = self.encode_prompt(
prompt=negative_prompt,
prompt_2=negative_prompt_2,
prompt_embeds=negative_prompt_embeds,
pooled_prompt_embeds=negative_pooled_prompt_embeds,
device=device,
num_images_per_prompt=num_images_per_prompt,
max_sequence_length=max_sequence_length,
lora_scale=lora_scale,
)
# 3.1 Prepare subject emb
if subject_image is not None:
subject_image = subject_image.resize((max(subject_image.size), max(subject_image.size)))
subject_image_embeds_dict = self.encode_image_emb(subject_image, device, dtype)
# 4. Prepare latent variables
num_channels_latents = self.transformer.config.in_channels // 4
latents, latent_image_ids = self.prepare_latents(
batch_size * num_images_per_prompt,
num_channels_latents,
height,
width,
prompt_embeds.dtype,
device,
generator,
latents,
)
# 5. Prepare timesteps
sigmas = np.linspace(1.0, 1 / num_inference_steps, num_inference_steps) if sigmas is None else sigmas
image_seq_len = latents.shape[1]
mu = calculate_shift(
image_seq_len,
self.scheduler.config.base_image_seq_len,
self.scheduler.config.max_image_seq_len,
self.scheduler.config.base_shift,
self.scheduler.config.max_shift,
)
timesteps, num_inference_steps = retrieve_timesteps(
self.scheduler,
num_inference_steps,
device,
sigmas=sigmas,
mu=mu,
)
num_warmup_steps = max(len(timesteps) - num_inference_steps * self.scheduler.order, 0)
self._num_timesteps = len(timesteps)
# handle guidance
if self.transformer.config.guidance_embeds:
guidance = torch.full([1], guidance_scale, device=device, dtype=torch.float32)
guidance = guidance.expand(latents.shape[0])
else:
guidance = None
if (ip_adapter_image is not None or ip_adapter_image_embeds is not None) and (
negative_ip_adapter_image is None and negative_ip_adapter_image_embeds is None
):
negative_ip_adapter_image = np.zeros((width, height, 3), dtype=np.uint8)
elif (ip_adapter_image is None and ip_adapter_image_embeds is None) and (
negative_ip_adapter_image is not None or negative_ip_adapter_image_embeds is not None
):
ip_adapter_image = np.zeros((width, height, 3), dtype=np.uint8)
if self.joint_attention_kwargs is None:
self._joint_attention_kwargs = {}
image_embeds = None
negative_image_embeds = None
if ip_adapter_image is not None or ip_adapter_image_embeds is not None:
image_embeds = self.prepare_ip_adapter_image_embeds(
ip_adapter_image,
ip_adapter_image_embeds,
device,
batch_size * num_images_per_prompt,
)
if negative_ip_adapter_image is not None or negative_ip_adapter_image_embeds is not None:
negative_image_embeds = self.prepare_ip_adapter_image_embeds(
negative_ip_adapter_image,
negative_ip_adapter_image_embeds,
device,
batch_size * num_images_per_prompt,
)
# 6. Denoising loop
with self.progress_bar(total=num_inference_steps) as progress_bar:
for i, t in enumerate(timesteps):
if self.interrupt:
continue
if image_embeds is not None:
self._joint_attention_kwargs["ip_adapter_image_embeds"] = image_embeds
# broadcast to batch dimension in a way that's compatible with ONNX/Core ML
timestep = t.expand(latents.shape[0]).to(latents.dtype)
# subject adapter
if subject_image is not None:
subject_image_prompt_embeds = self.subject_image_proj_model(
low_res_shallow=subject_image_embeds_dict['image_embeds_low_res_shallow'],
low_res_deep=subject_image_embeds_dict['image_embeds_low_res_deep'],
high_res_deep=subject_image_embeds_dict['image_embeds_high_res_deep'],
timesteps=timestep.to(dtype=latents.dtype),
need_temb=True
)[0]
self._joint_attention_kwargs['emb_dict'] = dict(
length_encoder_hidden_states=prompt_embeds.shape[1]
)
self._joint_attention_kwargs['subject_emb_dict'] = dict(
ip_hidden_states=subject_image_prompt_embeds,
scale=subject_scale,
)
noise_pred = self.transformer(
hidden_states=latents,
timestep=timestep / 1000,
guidance=guidance,
pooled_projections=pooled_prompt_embeds,
encoder_hidden_states=prompt_embeds,
txt_ids=text_ids,
img_ids=latent_image_ids,
joint_attention_kwargs=self.joint_attention_kwargs,
return_dict=False,
)[0]
if do_true_cfg:
if negative_image_embeds is not None:
self._joint_attention_kwargs["ip_adapter_image_embeds"] = negative_image_embeds
neg_noise_pred = self.transformer(
hidden_states=latents,
timestep=timestep / 1000,
guidance=guidance,
pooled_projections=negative_pooled_prompt_embeds,
encoder_hidden_states=negative_prompt_embeds,
txt_ids=text_ids,
img_ids=latent_image_ids,
joint_attention_kwargs=self.joint_attention_kwargs,
return_dict=False,
)[0]
noise_pred = neg_noise_pred + true_cfg_scale * (noise_pred - neg_noise_pred)
# compute the previous noisy sample x_t -> x_t-1
latents_dtype = latents.dtype
latents = self.scheduler.step(noise_pred, t, latents, return_dict=False)[0]
if latents.dtype != latents_dtype:
if torch.backends.mps.is_available():
# some platforms (eg. apple mps) misbehave due to a pytorch bug: https://github.com/pytorch/pytorch/pull/99272
latents = latents.to(latents_dtype)
if callback_on_step_end is not None:
callback_kwargs = {}
for k in callback_on_step_end_tensor_inputs:
callback_kwargs[k] = locals()[k]
callback_outputs = callback_on_step_end(self, i, t, callback_kwargs)
latents = callback_outputs.pop("latents", latents)
prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds)
# call the callback, if provided
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
progress_bar.update()
if XLA_AVAILABLE:
xm.mark_step()
if output_type == "latent":
image = latents
else:
latents = self._unpack_latents(latents, height, width, self.vae_scale_factor)
latents = (latents / self.vae.config.scaling_factor) + self.vae.config.shift_factor
image = self.vae.decode(latents, return_dict=False)[0]
image = self.image_processor.postprocess(image, output_type=output_type)
# Offload all models
self.maybe_free_model_hooks()
if not return_dict:
return (image,)
return FluxPipelineOutput(images=image)
def with_style_lora(self, lora_file_path, lora_weight=1.0, trigger='', *args, **kwargs):
flux_load_lora(self, lora_file_path, lora_weight)
kwargs['prompt'] = f"{trigger}, {kwargs['prompt']}"
res = self.__call__(*args, **kwargs)
flux_load_lora(self, lora_file_path, -lora_weight)
return res
|